This version is available at https://strathprints.strath.ac.uk/61691/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the AbstractIn this paper we assess and compare the effectiveness of four classes of nonnuclear asteroid deflection methods applied to a wide range of virtual collision scenarios. We consider the kinetic impactor, laser ablation, the ion beaming technique and two variants of the gravity tractor. A simple but realistic model of each deflection method was integrated within a systematic approach to size the spacecraft and predict the achievable deflection for a given mission and a given maximum mass at launch. A sample of 100 synthetic asteroids was then created from the current distribution of NEAs and global optimisation methods were used to identify the optimal solution in each case according to two criteria: the minimum duration between the departure date and the time of virtual impact required to deflect the NEA by more than two Earth radii and the maximum miss-distance achieved within a total duration of 10 years. Our results provide an interesting insight into the range of applicability of individual deflection methods and argue the need to develop multiple methods in parallel for a global mitigation of all possible threats.
This paper presents an approach to control the rotational motion of large space debris (the target) before the spacecraft starts deflecting its trajectory through laser ablation. A rotational control strategy based on the instantaneous angular velocity of the target is presented. The aim is to impart the maximum control torque in the direction of the instantaneous angular velocity while minimizing the undesired control components in the other directions. An on-board state estimation and control algorithm is then implemented. It simultaneously provides an optimal control of the rotational motion of the target through the combination of a LIDAR and a navigation camera. The instantaneous angular velocity of the debris is estimated through the application of the optic flow technique. The whole control and estimation technique is applied to the case of cylindrical and parallelepiped shapes as representative of upper stages and spacecraft. When applied to the cylindrical shape, results show that the control strategy and laser technique fail to control along three directions unless the geometrical axes are different from the inertial ones. In general the thrust vector is aligned with the normal to the local surface meaning that no control torque can be exerted along the longitudinal axis in the case of an ideal cylinder
Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: The impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power
Over the past few years, a series of studies have demonstrated the theoretical benefits of using laser ablation in order to mitigate the threat of a potential asteroid on a collision course with earth. Compared to other slow-push mitigation strategies, laser ablation allows for a significant reduction in fuel consumption since the ablated material is used as propellant. A precise modelling of the ablation process is however difficult due to the high variability in the physical parameters encountered among the different asteroids as well as the scarcity of experimental studies available in the literature. In this paper, we derive a new thermal model to simulate the efficiency of a laser-based deflector. The useful material properties are first derived from thermochemical tables and equilibrium thermodynamic considerations. These properties are then injected in a 3D axisymetrical thermal model developed in Matlab. A temperature-dependant conduction flux is imposed on the exterior boundary condition that takes into account the balance between the incident power and the power losses due to the vaporization process across the Knudsen layer and the radiations respectively. A non-linear solver is finally used and the solution integrated over the ablation front to reconstruct the net thrust and the global mass flow. Compared to an initial 1D model, this new approach shows the importance of the parietal radiation losses in the case of a CW laser. Despite the low energy conversion efficiency, this new model still demonstrates the theoretical benefit of using lasers over more conventional low-thrust strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.