An abstract is not only a mirror of the full article; it also aims to draw attention to the most important information of the document it summarizes. Many studies have compared abstracts with full texts for their informativeness. In contrast to previous studies, we propose to investigate this relation based not only on the amount of information given by the abstract but also on its importance. The main objective of this paper is to introduce a new metric called GEM to measure the "generosity" or representativeness of an abstract. Schematically speaking, a generous abstract should have the best possible score of similarity for the sections important to the reader. Based on a questionnaire gathering information from 630 researchers, we were able to weight sections according to their importance. In our approach, seven sections were first automatically detected in the full text. The accuracy of this classification into sections was above 80% compared with a dataset of documents where sentences were assigned to sections by experts. Second, each section was weighted according to the questionnaire results. The GEM score was then calculated as a sum of weights of sections in the full text corresponding to sentences in the abstract normalized over the total sum of weights of sections in the full text. The correlation between GEM score and the mean of the scores assigned by annotators was higher than the correlation between scores from different experts. As a case study, the GEM score was calculated for 36,237 articles in environmental sciences retrieved from the French ISTEX database. The main result was that GEM score has increased over time. Moreover, this trend depends on subject area and publisher. No correlation was found between GEM score and citation rate or open access status of articles. We conclude that abstracts are more generous in recent publications and cannot be considered as mere teasers. This research should be pursued in greater depth, particularly by examining structured abstracts. GEM score could be a valuable indicator for exploring large numbers of abstracts, by guiding the reader in his/her choice of whether or not to obtain and read full texts.
BackgroundSince processes in well-known model organisms have specific features different from those in Bos taurus, the organism under study, a good way to describe gene regulation in ruminant embryos would be a species-specific consideration of closely related species to cattle, sheep and pig. However, as highlighted by a recent report, gene dictionaries in pig are smaller than in cattle, bringing a risk to reduce the gene resources to be mined (and so for sheep dictionaries). Bioinformatics approaches that allow an integration of available information on gene function in model organisms, taking into account their specificity, are thus needed. Besides these closely related and biologically relevant species, there is indeed much more knowledge of (i) trophoblast proliferation and differentiation or (ii) embryogenesis in human and mouse species, which provides opportunities for reconstructing proliferation and/or differentiation processes in other mammalian embryos, including ruminants. The necessary knowledge can be obtained partly from (i) stem cell or cancer research to supply useful information on molecular agents or molecular interactions at work in cell proliferation and (ii) mouse embryogenesis to supply useful information on embryo differentiation. However, the total number of publications for all these topics and species is great and their manual processing would be tedious and time consuming. This is why we used text mining for automated text analysis and automated knowledge extraction. To evaluate the quality of this “mining”, we took advantage of studies that reported gene expression profiles during the elongation of bovine embryos and defined a list of transcription factors (or TF, n = 64) that we used as biological “gold standard”. When successful, the “mining” approach would identify them all, as well as novel ones.MethodsTo gain knowledge on molecular-genetic regulations in a non model organism, we offer an approach based on literature-mining and score arrangement of data from model organisms. This approach was applied to identify novel transcription factors during bovine blastocyst elongation, a process that is not observed in rodents and primates. As a result, searching through human and mouse corpuses, we identified numerous bovine homologs, among which 11 to 14% of transcription factors including the gold standard TF as well as novel TF potentially important to gene regulation in ruminant embryo development. The scripts of the workflow are written in Perl and available on demand. They require data input coming from all various databases for any kind of biological issue once the data has been prepared according to keywords for the studied topic and species; we can provide data sample to illustrate the use and functionality of the workflow.ResultsTo do so, we created a workflow that allowed the pipeline processing of literature data and biological data, extracted from Web of Science (WoS) or PubMed but also from Gene Expression Omnibus (GEO), Gene Ontology (GO), Uniprot, HomoloGene, TcoF-DB and TF...
Rumour is an old social phenomenon used in politics and other public spaces. It has been studied for only hundred years by sociologists and psychologists by qualitative means. Social media platforms open new opportunities to improve quantitative analyses. We scanned all scientific literature to find relevant features. We made a quantitative screening of some specific rumours (in French and in English). Firstly, we identified some sources of information to find them. Secondly, we compiled different reference, rumouring and event datasets. Thirdly, we considered two facets of a rumour: the way it can spread to other users, and the syntagmatic content that may or may not be specific for a rumour. We found 53 features, clustered into six categories, which are able to describe a rumour message. The spread of a rumour is multi-harmonic having different frequencies and spikes, and can survive several years. Combinations of words (n-grams and skip-grams) are not typical of expressivity between rumours and news but study of lexical transition from a time period to the next goes in the sense of transmission pattern as described by Allport theory of transmission. A rumour can be interpreted as a speech act but with transmission patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.