Drosophila has been shown to be a valuable model for the investigation of host-pathogen interactions. Study of the Drosophila immune response has been hampered, however, by the lack of true Drosophila pathogens. In nearly all studies reported, the bacteria used were directly injected within the body cavity of the insect, bypassing the initial steps of a natural interaction. Here, we report the identification of a previously uncharacterized bacterial species, Pseudomonas entomophila (Pe), which has the capacity to induce the systemic expression of antimicrobial peptide genes in Drosophila after ingestion. In contrast to previously identified bacteria, Pe is highly pathogenic to both Drosophila larvae and adults, and its persistence in larvae leads to a massive destruction of gut cells. Using this strain, we have analyzed the modulation of the larval transcriptome upon bacterial infection. We found that natural infection by Pe induces a dramatic change in larval gene expression. In addition to immunity genes, our study identifies many genes associated with Pe pathogenesis that have been previously unreported.innate immunity ͉ microarray ͉ host-microbe interaction
How persistent viral infections are established and maintained is widely debated and remains poorly understood. We found here that the persistence of RNA viruses in Drosophila melanogaster was achieved through the combined action of cellular reverse-transcriptase activity and the RNA-mediated interference (RNAi) pathway. Fragments of diverse RNA viruses were reverse-transcribed early during infection, which resulted in DNA forms embedded in retrotransposon sequences. Those virus-retrotransposon DNA chimeras produced transcripts processed by the RNAi machinery, which in turn inhibited viral replication. Conversely, inhibition of reverse transcription hindered the appearance of chimeric DNA and prevented persistence. Our results identify a cooperative function for retrotransposons and antiviral RNAi in the control of lethal acute infection for the establishment of viral persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.