The static and dynamic behavior of InAlAs/InGaAs double-gate high-electron mobility transistors (DG-HEMTs) is studied by means of an ensemble 2-D Monte Carlo simulator. The model allows us to satisfactorily reproduce the experimental performance of this novel device and to go deeply into its physical behavior. A complete comparison between DG and similar standard HEMTs has been performed, and devices with different gate lengths have been analyzed in order to check the attenuation of short-channel effects expected in the DG-structures. We have confirmed that, for very small gate lengths, short-channel effects are less significant in the DG-HEMTs, leading to a better intrinsic dynamic performance. Moreover, the higher values of the transconductance over drain conductance ratio g m /g d and, especially, the lower gate resistance R g also provide a significant improvement of the extrinsic f max. Index Terms-Double-gate high-electron mobility transistor (DG-HEMT), dynamic behavior, Monte Carlo (MC) simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.