We implemented a GPU based parallel code to perform Monte Carlo simulations of the two dimensional q-state Potts model. The algorithm is based on a checkerboard update scheme and assigns independent random numbers generators to each thread. The implementation allows to simulate systems up to ∼ 10 9 spins with an average time per spin flip of 0.147ns on the fastest GPU card tested, representing a speedup up to 155x, compared with an optimized serial code running on a high-end CPU.The possibility of performing high speed simulations at large enough system sizes allowed us to provide a positive numerical evidence about the existence of metastability on very large systems based on Binder's criterion, namely, on the existence or not of specific heat singularities at spinodal temperatures different of the transition one.
We extend the theory of labelled Markov processes to include internal non-determinism, which is a fundamental concept for the further development of a process theory with abstraction on non-deterministic continuous probabilistic systems. We define non-deterministic labelled Markov processes (NLMP) and provide three definitions of bisimulations: a bisimulation following a traditional characterisation; a state-based bisimulation tailored to our ‘measurable’ non-determinism; and an event-based bisimulation. We show the relations between them, including the fact that the largest state bisimulation is also an event bisimulation. We also introduce a variation of the Hennessy–Milner logic that characterises event bisimulation and is sound with respect to the other bisimulations for an arbitrary NLMP. This logic, however, is infinitary as it contains a denumerable . We then introduce a finitary sublogic that characterises all bisimulations for an image finite NLMP whose underlying measure space is also analytic. Hence, in this setting, all the notions of bisimulation we consider turn out to be equal. Finally, we show that all these bisimulation notions are different in the general case. The counterexamples that separate them turn out to be non-probabilistic NLMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.