Li 2 B 12 H 12 , Na 2 B 12 H 12 , and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li-and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li 2 B 12 H 12 and Na 2 B 12 H 12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsic frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric symmetry of the anion and the symmetry of the lattice itself, which can facilitate cation hopping. Finally, facile anion reorientations and other low-frequency thermal vibrations lead to fluctuations in the local potential that enhance cation mobility by creating a local driving force for hopping. We discuss the relevance of each factor for developing new ionic conductivity descriptors that can be used for discovery and optimization of closo-borate solid electrolytes, as well as superionic conductors more generally.
Inorganic lithium solid electrolytes are critical components in next-generation solid-state batteries, yet the fundamental nature of the cation−anion interactions and their relevance for ionic conductivity in these materials remain enigmatic. Here, we employ first-principles molecular dynamics simulations to explore the interplay among chemistry, structure, and functionality of a highly conductive Li + solid electrolyte, Li 3 InBr 6 . Using local-orbital projections to dynamically track the evolution of the electronic charge density, the simulations reveal rapid, correlated fluctuations between cation−anion interactions with different degrees of directional covalent character. These chemical bond dynamics are shown to correlate with Li + mobility and are enabled thermally by intrinsic frustration between the preferred geometries of chemical bonding and lattice symmetry. We suggest that the fluctuating chemical environment from the polarizable anions functions like a solvent, contributing to the superionic behavior of Li 3 InBr 6 by temporarily stabilizing configurations favorable for migrating Li + . The generality of these conclusions for understanding solid electrolytes and key factors governing the superionic phase transition is discussed.
Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6−xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x = 3 and x = 6 compositions can be understood by assuming that the alloy separates into Br-rich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical. Similarities with other halide superionic conductors are highlighted.
Although multiple oxide-based solid electrolyte materials with intrinsically high ionic conductivities have emerged, practical processing and synthesis routes introduce grain boundaries and other interfaces that can perturb primary conduction channels. To directly probe these effects, we demonstrate an efficient and general mesoscopic computational method capable of predicting effective ionic conductivity through a complex polycrystalline oxide-based solid electrolyte microstructure without relying on simplified equivalent circuit description. We parameterize the framework for Li7-xLa3Zr2O12 (LLZO) garnet solid electrolyte by combining synthetic microstructures from phase-field simulations with diffusivities from molecular dynamics simulations of ordered and disordered systems. Systematically designed simulations reveal an interdependence between atomistic and mesoscopic microstructural impacts on the effective ionic conductivity of polycrystalline LLZO, quantified by newly defined metrics that characterize the complex ionic transport mechanism. Our results provide fundamental understanding of the physical origins of the reported variability in ionic conductivities based on an extensive analysis of literature data, while simultaneously outlining practical design guidance for achieving desired ionic transport properties based on conditions for which sensitivity to microstructural features is highest. Additional implications of our results are discussed, including a possible connection between ion conduction behavior and dendrite formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.