The atmosphere is the primary pathway by which mercury enters ecosystems. Despite the importance of atmospheric deposition, concentrations and chemistry of gaseous oxidized (GOM) and particulate-bound (PBM) mercury are poorly characterized. Here, three membranes (cation exchange (CEM), nylon, and poly(tetrafluoroethylene) (PTFE) membranes) were used as a means for quantification of concentrations and identification of the chemistry of GOM and PBM. Detailed HYSPLIT analyses were used to determine sources of oxidants forming reactive mercury (RM = PBM + GOM). Despite the coarse sampling resolution (1–2 weeks), a gradient in chemistry was observed, with halogenated compounds dominating over the Pacific Ocean, and continued influence from the marine boundary layer in Nevada and Utah with a periodic occurrence in Maryland. Oxide-based RM compounds arrived at continental locations via long-range transport. Nitrogen, sulfur, and organic RM compounds correlated with regional and local air masses. RM concentrations were highest over the ocean and decreased moving from west to east across the United States. Comparison of membrane concentrations demonstrated that the CEM provided a quantitative measure of RM concentrations and PTFE membranes were useful for collecting PBM. Nylon membranes do not retain all compounds with equal efficiency in ambient air, and an alternate desorption surface is needed.
There is much uncertainty regarding the sources of reactive mercury (RM) compounds and atmospheric chemistry driving their formation. This work focused on assessing the chemistry and potential sources of reactive mercury measured in Reno, Nevada, United States, using 1 year of data collected using Reactive Mercury Active System. In addition, ancillary meteorology and criteria air pollutant data, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analyses, and a generalized linear model were applied to better understand reactive mercury observations. During the year of sampling, a fire event impacted the sampling site, and gaseous elemental Hg and particulate-bound mercury concentrations increased, as did HgII-S compounds. Data collected on a peak above Reno showed that reactive mercury concentrations were higher at higher elevation, and compounds found in Reno were the same as those measured on the peak. HYSPLIT results demonstrated RM compounds were generated inside and outside of the basin housing Reno. Compounds were sourced from San Francisco, Sacramento, and Reno in the fall and winter, and from long-range transport and the marine boundary layer during the spring and summer. The generalized linear model produced correlations that could be explained; however, when applying the model to similar data collected at two other locations, the Reno model did not predict the observations, suggesting that sampling location chemistry and concentration cannot be generalized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.