Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54,896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalog. The results suggest that the second gradient moment, G 2 , has the potential to dramatically improve over more conventional morphometric parameters. It separates early from late type galaxies better (∼ 90%) than the CAS system (C ∼ 79%, A ∼ 50%, S ∼ 43%) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.
Complex network theory provides an important tool for the analysis of complex systems such as the Earth's climate. In this context, functional climate networks can be constructed using a spatiotemporal climate dataset and a suitable time series distance function. The resulting coarse-grained view on climate variability consists of representing distinct areas on the globe (i.e., grid cells) by nodes and connecting pairs of nodes that present similar time series. One fundamental concern when constructing such a functional climate network is the definition of a metric that captures the mutual similarity between time series. Here we study systematically the effect of 29 time series distance functions on functional climate network construction based on global temperature data. We observe that the distance functions previously used in the literature commonly generate very similar networks while alternative ones result in rather distinct network structures and reveal different long-distance connection patterns. These patterns are highly important for the study of climate dynamics since they generally represent pathways for the long-distance transportation of energy and can be used to forecast climate variability on subseasonal to interannual or even decadal scales. Therefore, we propose the measures studied here as alternatives for the analysis of climate variability and to further exploit their complementary capability of capturing different aspects of the underlying dynamics that may help gaining a more holistic empirical understanding of the global climate system.
Due to global climate change, droughts are likely to become more frequent and more severe in many regions such as in South Africa. In Limpopo, observed high climate variability and projected future climate change will likely increase future maize production risks. This paper evaluates drought patterns in Limpopo at two representative sites. We studied how drought patterns are projected to change under future climatic conditions as an important step in identifying adaptation measures (e.g., breeding maize ideotypes resilient to future conditions). Thirty-year time horizons were analyzed, considering three emission scenarios and five global climate models. We applied the WOFOST crop model to simulate maize crop growth and yield formation over South Africa’s summer season. We considered three different crop emergence dates. Drought indices indicated that mainly in the scenario SSP5-8.5 (2051–2080), Univen and Syferkuil will experience worsened drought conditions (DC) in the future. Maize yield tends to decline and future changes in the emergence date seem to impact yield significantly. A possible alternative is to delay sowing date to November or December to reduce the potential yield losses. The grain filling period tends to decrease in the future, and a decrease in the duration of the growth cycle is very likely. Combinations of changed sowing time with more drought tolerant maize cultivars having a longer post-anthesis phase will likely reduce the potential negative impact of climate change on maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.