Tendons and ligaments mediate the attachment of muscle to bone and of bone to bone to provide connectivity and structural integrity in the musculoskeletal system. We show that TGFβ signaling plays a major role in the formation of these tissues. TGFβ signaling is a potent inducer of the tendon progenitor (TNP) marker scleraxis both in organ culture and in cultured cells, and disruption of TGFβ signaling in Tgfb2-/-double mutant embryos or through inactivation of the type II TGFβ receptor (TGFBR2; also known as TβRII) results in the loss of most tendons and ligaments in the limbs, trunk, tail and head. The induction of scleraxis-expressing TNPs is not affected in mutant embryos and the tendon phenotype is first manifested at E12.5, a developmental stage in which TNPs are positioned between the differentiating muscles and cartilage, and in which Tgfb2 or Tgfb3 is expressed both in TNPs and in the differentiating muscles and cartilage. TGFβ signaling is thus essential for maintenance of TNPs, and we propose that it also mediates the recruitment of new tendon cells by differentiating muscles and cartilage to establish the connections between tendon primordia and their respective musculoskeletal counterparts, leading to the formation of an interconnected and functionally integrated musculoskeletal system.
Development of midbrain dopaminergic neurons is known to depend on inductive signals derived from the ventral midline, including Sonic hedgehog (Shh) as one of the identified molecules. Here we show that in addition to Shh, transforming growth factor (TGF)-beta is required for both induction and survival of ventrally located midbrain dopaminergic neurons. Like Shh, TGF-beta is expressed in early embryonic structures such as notochord and floor plate, as well as in the area where midbrain dopaminergic neurons are developing. Treatment of cells dissociated from the rat embryonic day (E) 12 midbrain floor with TGF-beta significantly increases the number of tyrosine hydroxylase (TH)-positive dopaminergic neurons within 24 hr. Neutralization of TGF-beta in vitro completely abolishes the induction of dopaminergic neurons. In the absence of TGF-beta, Shh cannot induce TH-positive neurons, and vice versa, neutralizing endogenous Shh abolishes the capacity of TGF-beta to induce dopaminergic neurons in vitro. Furthermore, neutralization of TGF-beta in vivo during chick E2-7 but not E4-7 resulted in a significant reduction in TH-positive neurons in the ventral midbrain floor but not in the locus coeruleus or diencephalon, which suggests that the TGF-beta is required for the induction of mesencephalic dopaminergic neurons with a critical time period at E2/E3. Furthermore, neutralization of TGF-beta between E6 and 10, a time period during maturation of mesencephalic dopaminergic neurons when no further inductive cues are required, also resulted in a significant loss of dopaminergic neurons, suggesting that TGF-beta is required for the promotion of survival of ventral midbrain dopaminergic neurons as well. Together, our results identify TGF-beta as an essential mediator for the induction and maintenance of midbrain dopaminergic neurons.
Transforming growth factors-beta (TGF-b) are multifunctional molecules with profound biological effects in many developmental processes including regulation of cell proliferation, differentiation, cell adhesion, skeletal development, haematopoiesis, inflammatory responses, and wound healing. To learn about the role of TGF-b in vivo, phenotypes of targeted mutations of molecules within the TGF-b signalling pathway, TGF-b1, -b2, -b3, TGF-b receptor (TbR-II) and the signalling molecules SMAD2, SMAD3 and SMAD4, are discussed in this review. The three individual TGF-b mutants show distinct and only partially overlapping phenotypes. In mice, targeted disruption of the TGF-b1 gene results in diffuse and lethal inflammation about 3 weeks after birth, suggesting a prominent role of TGF-b in the regulation of immune cell proliferation and extravasation into tissues. However, just half of the TGF-b1 (±/±) conceptuses actually reach partuition due to defective haematopoiesis and endothelial differentiation. Targeted disruption of both TGF-b2 and TGF-b3 genes results in perinatal lethality. TGF-b2 null mice exhibit a broad range of developmental defects, including cardiac, lung, craniofacial, limb, eye, ear and urogenital defects, whereas TGF-b3 gene ablation results exclusively in defective palatogenesis and delayed pulmonary development. The TbR-II null phenotype closely resembles that of TGF-b1 (±/±) conceptuses, which die in utero by E10.5. Loss of SMAD2 or SMAD4 results in related phenotypes: the mutants fail to form an organized egg cylinder, lack mesoderm required for gastrulation and die prior to E8.5. Together, gene ablation within the TGF-b signalling pathway supports the notion of a prominent role of TGF-b during development.
Given all known biological activities, it is anticipated that transforming growth factors beta (TGF-betas) play important roles in many different developmental processes. As all three TGF-beta isoforms display overlapping expression patterns, deletion of one TGF-beta isoform might be compensated for by another. In the present study, targeted disruption of both Tgfbeta2 and Tgfbeta3 genes was undertaken to circumvent this problem and determine the essential roles of TGF-beta2 and TGF-beta3 in vivo. Tgfbeta2(-/-) Tgfbeta3(-/-) double knockout mice and their three-allelic Tgfbeta2(-/-) Tgfbeta3(+/-) littermates display a lack of distal parts of the rib, a lack of sternal primordia, and failure in ventral body wall closure, leading to an extrathoracic position of the heart and extrusion of the liver. In addition, abnormalities in connective tissue composition and an early embryonic lethality [around embryonic day (E) 15.5] are seen. In contrast, Tgfbeta2 (+/-) Tgfbeta3 (-/-) littermates show normal rib and sternum development, normal anterior body wall fusion, and are still alive on E18.5. TGF-beta2 is already known to play a role in skeletal and craniofacial development. The results presented here show that beyond this: (a). TGF-betas obviously play a fundamental role in midline fusion and (b). the Tgfbeta2 gene seems to play a more important role in mediating developmental processes than the Tgfbeta3 gene, since Tgfbeta2 (+/-) Tgfbeta3 (-/-) mutants - in contrast to their Tgfbeta2(-/-) Tgfbeta3 (+)(/-) littermates - do not display severe malformations.
Chicken eggs in the early phase of breeding are between in vitro and in vivo systems and provide a vascular test environment not only to study angiogenesis but also to study tumorigenesis. After the chick chorioallantoic membrane (CAM) has developed, its blood vessel network can be easily accessed, manipulated and observed and therefore provides an optimal setting for angiogenesis assays. Since the lymphoid system is not fully developed until late stages of incubation, the chick embryo serves as a naturally immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition to nurturing developing allo-and xenografts, the CAM blood vessel network provides a uniquely supportive environment for tumor cell intravasation, dissemination, and vascular arrest and a repository where arrested cells extravasate to form micro metastatic foci.For experimental purposes, in most of the recent studies the CAM was exposed by cutting a window through the egg shell and experiments were carried out in ovo, resulting in significant limitations in the accessibility of the CAM and possibilities for observation and photo documentation of effects. When shell-less cultures of the chick embryo were used 1-4 , no experimental details were provided and, if published at all, the survival rates of these cultures were low. We refined the method of ex ovo culture of chick embryos significantly by introducing a rationally controlled extrusion of the egg content. These ex ovo cultures enhance the accessibility of the CAM and chick embryo, enabling easy in vivo documentation of effects and facilitating experimental manipulation of the embryo. This allows the successful application to a large number of scientific questions: (1) As an improved angiogenesis assay 5,6 , (2) an experimental set up for facilitated injections in the vitreous of the chick embryo eye 7-9 , (3) as a test environment for dissemination and intravasation of dispersed tumor cells from established cell lines inoculated on the CAM 10-12 , (4) as an improved sustaining system for successful transplantation and culture of limb buds of chicken and mice 13 as well as (5) for grafting, propagation, and re-grafting of solid primary tumor tissue obtained from biopsies on the surface of the CAM 14 .In this video article we describe the establishment of a refined chick ex ovo culture and CAM assay with survival rates over 50%. Besides we provide a step by step demonstration of the successful application of the ex ovo culture for a large number of scientific applications.Daniel S. Dohle, Susanne D. Pasa, and Sebastian Gustmann contributed equally to this study. ProtocolAll equipment and reagents have to be purchased sterile or needs to be heat or steam sterilized or sterilized with 70% ETOH.The authors state that experiments on animals were performed in accordance with the European Communities Council Directive (86/609/EEC), following the Guidelines of the NIH regarding the care and use of animals for experimental procedures and ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.