This study investigated the interaction of NaCl-salinity and elevated atmospheric CO2 concentration on gas exchange, leaf pigment composition, and leaf ultrastructure of the potential cash crop halophyte Aster tripolium. The plants were irrigated with five different salinity levels (0, 25, 50, 75, 100% seawater salinity) under ambient and elevated (520 ppm) CO2. Under saline conditions (ambient CO2) stomatal and mesophyll resistance increased, leading to a significant decrease in photosynthesis and water use efficiency (WUE) and to an increase in oxidative stress. The latter was indicated by dilations of the thylakoid membranes and an increase in superoxide dismutase (SOD) activity. Oxidative stress could be counteracted by thicker epidermal cell walls of the leaves, a thicker cuticle, a reduced chlorophyll content, an increase in the chlorophyll a/b ratio and a transient decline of the photosynthetic efficiency. Elevated CO2 led to a significant increase in photosynthesis and WUE. The improved water and energy supply was used to increase the investment in mechanisms reducing water loss and oxidative stress (thicker cell walls and cuticles, a higher chlorophyll and carotenoid content, higher SOD activity), resulting in more intact thylakoids. As these mechanisms can improve survival under salinity, A. tripolium seems to be a promising cash crop halophyte which can help in desalinizing and reclaiming degraded land.
Our study aimed at investigating the influence of elevated atmospheric CO(2) concentration on the salinity tolerance of the cash crop halophyte Aster tripolium L., thereby focussing on protein expression and enzyme activities. The plants were grown in hydroponics using a nutrient solution with or without addition of NaCl (75% seawater salinity), under ambient (380 ppm) and elevated (520 ppm) CO(2). Under ambient CO(2) concentration enhanced expressions and activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and glutathione-S-transferase in the salt-treatments were recorded as a reaction to oxidative stress. Elevated CO(2) led to significantly higher enzyme expressions and activities in the salt-treatments, so that reactive oxygen species could be detoxified more effectively. Furthermore, the expression of a protective heat shock protein (class 20) increased under salinity and was even further enhanced under elevated CO(2) concentration. Additional energy had to be provided for the mechanisms mentioned above, which was indicated by the increased expression of a beta ATPase subunit and higher v-, p- and f-ATPase activities under salinity. The higher ATPase expression and activities also enable a more efficient ion transport and compartmentation for the maintenance of ion homeostasis. We conclude that elevated CO(2) concentration is able to improve the survival of A. tripolium under salinity because more energy is provided for the synthesis and enhanced activity of enzymes and proteins which enable a more efficient ROS detoxification and ion compartmentation/transport.
The
role of sample chamber configuration for the chemical vapor
deposition of graphene over copper was investigated in detail. A configuration
in which the gas flow is unrestricted was shown to lead to graphene
with an inhomogeneous number of layers (between 1 and 3). An alternative
configuration in which one end of the inner tube (in which the sample
is placed) is closed so as to restrict the gas flow leads a homogeneous
graphene layer number. Depending on the sample placement, either homogeneous
monolayer or bilayer graphene is obtained. Under our growth conditions,
the data show local conditions play a role on layer homogeneity such
that under quasi-static equilibrium gas conditions not only is the
layer number stabilized, but the quality of the graphene improves.
In short, our data suggests vapor trapping can trap Cu species leading
to higher carbon concentrations, which determines layer number and
improved decomposition of the carbon feedstock (CH4), which
leads to higher quality graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.