These data highlight previously uncharacterized roles for BLA DA D1 and D2 receptors in biasing choice during risk/reward decision making through mediation of reward/negative feedback sensitivity.
The medial orbitofrontal cortex (mOFC) regulates a variety of cognitive functions, including refining action selection involving reward uncertainty. This region sends projections to numerous subcortical targets, including the ventral and dorsal striatum, yet how these corticostriatal circuits differentially regulate risk/reward decision-making is unknown. The present study examined the contribution of mOFC circuits linking the nucleus accumbens (NAc) and dorsomedial striatum (DMS) to risk/ reward decision-making using pharmacological disconnections. Male rats were well trained on a probabilistic discounting task involving choice between small/certain or large/risky rewards, with the probability of obtaining the larger reward decreasing or increasing over a session. Disconnection of mOFC-striatal pathways was achieved using infusions of GABA agonists inactivating the mOFC in one hemisphere, combined with NAc or DMS inactivation in the contralateral or ipsilateral hemisphere. Perturbing mOFC fi NAc circuits induced suboptimal, near-random patterns of choice that manifested as a flattening of the discounting curve. Animals were equally likely to stay or shift following rewarded/nonrewarded choices, suggesting this pathway mediates use of information about reward history to stabilize decision biases. In contrast, mOFC fi DMS disconnection impaired adjustments in decision biases, causing opposing changes in risky choice depending on how probabilities varied over time. This was driven by alterations in lose-shift behavior, suggesting mOFC fi DMS circuits track volatility in nonrewarded actions to adjust choice in accordance with changes in profitability. Thus, separate mOFC-striatal projection pathways regulate dissociable processes underlying decision-making, with mOFC fi NAc circuits aiding in establishing and stabilizing tasks states and mOFC fi DMS circuits facilitating transitions across states to promote flexible reward seeking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.