Background We previously demonstrated that tissue plasminogen activator (tPA) reduces infarct size after mechanical middle cerebral artery occlusion (MCAO) in wild-type (WT) mice and transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). Clinically, tPA limits ischemic damage by dissolving the clot blocking blood flow through a cerebral artery. To mimic the clinical situation, we developed a new mouse model of thromboembolic stroke, and tested the efficacy of tPA in WT and DR2-Tg mice. New Method Autologous blood is withdrawn into a PE-8 catheter filled with 2 IU α-thrombin. After exposing the catheter briefly to air, the catheter is reintroduced into the external (ECA) and advanced into the internal carotid artery (ICA) to allow for intravascular injection of thrombin at the MCA bifurcation. To validate the model, we tested the effect of tPA on laser-Doppler perfusion (LDP) over the MCA territory and infarct size in WT and DR2-Tg mice. Results The procedure results in a consistent drop in LDP, and leads to a highly reproducible ischemic lesion. When administered at 15 min after thrombosis, tPA restored LDP and resulted in a significant reduction in infarct size at 24 hours after thrombosis in both WT and DR2-Tg. Comparison with Existing Methods Our model significantly reduces surgery time, requires a single anesthesia exposure, and produces a consistent and predictable infarction, with low variability and mortality. Conclusion We validated the efficacy of tPA in restoring blood flow and reducing infarct in a new model of endovascular thromboembolic stroke in the mouse.
Chemoattraction of leukocytes into the brain after induction of middle cerebral artery occlusion (MCAO) increases the lesion size and worsens disease outcome. Our previous studies demonstrated that partial MHC class II constructs can reverse this process. However, the potential application of pMHC to human stroke is limited by the need to rapidly match recipient MHC class II with the β1 domain of the pMHC construct. We designed a novel recombinant protein comprised of the HLA-DRα1 domain linked to MOG-35-55 peptide but lacking the β1 domain found in pMHC and treated MCAO after 4 h reperfusion in humanized DR2 mice. Infarct volumes were quantified after 96 h reperfusion and immune cells from the periphery and CNS were evaluated for expression of CD74 and other cell surface, cytokine and pathway markers. This study demonstrates that four daily treatments with DRα1-MOG-35-55 reduced infarct size by 40 % in the cortex, striatum and hemisphere, inhibited the migration of activated CD11b+CD45high cells from the periphery to the brain and reversed splenic atrophy. Furthermore, DRα1-MOG-35-55 bound to CD74 on monocytes and blocked both binding and downstream signaling of macrophage migration inhibition factor (MIF) that may play a key role in infarct development. The novel DRα1-MOG-35-55 construct is highly therapeutic in experimental stroke and could be given to all patients at least 4 h after stroke onset without the need for tissue typing due to universal expression of DRα1 in humans.
Isoflurane preconditioning neuroprotection in experimental stroke is male-specific. The role of androgens in the ischemic sensitivity of isoflurane preconditioned male brain and whether androgen effects are androgen receptor dependent were assessed. Male C57BL/6 mice were implanted with flutamide (androgen receptor antagonist), or castrated and implanted with testosterone, dihydrotestosterone, flutamide, letrozole (aromatase inhibitor), or vehicle 7-13 days before preconditioning. P450 estrogen aromatase wild-type and knockout mice were also evaluated. All mice were preconditioned for 4 h with 0% (sham preconditioning) or 1% isoflurane (isoflurane preconditioning) and recovered for 24 h. Mice then underwent 2 h of middle cerebral artery occlusion and were evaluated 22 h later for infarct volume. For neurobehavioral outcomes, sham and isoflurane preconditioned castrated male±dihydrotestosterone groups underwent 1 h of middle cerebral artery occlusion followed by 9 days of reperfusion. Isoflurane preconditioning neuroprotection relative to infarct volume outcomes were testosterone and dihydrotestosterone dose-specific and androgen receptor-dependent. Relative to long-term neurobehavioral outcomes, front paw sensorimotor function improved in isoflurane preconditioned mice regardless of androgen status while androgen replacement independently improved sensorimotor function. In contrast, isoflurane preconditioning improved cognitive function in castrates lacking endogenous androgens, but this improvement was absent in androgen replaced mice. Our findings suggest that androgen availability during isoflurane preconditioning may influence infarct volume and neurobehavioral outcomes in male mice following experimental stroke. Keywordsandrogens; testosterone; dihydrotestosterone; androgen receptor; neuroprotection; preconditioning Prior brain exposure to minor insults, chemicals, or pharmacological agents can "precondition" or increase the brain's tolerance to future, more injurious events. Anesthetics in particular may play an important and unique role as brain preconditioning agents because of their clinical use and relevance during the perioperative period for cardiovascular procedures and neurosurgical interventions. Perioperative stroke is a serious complication that can occur during or following * Corresponding author. Tel: +1-503-494-5735; fax: +1-503-494-3092. murphyst@ohsu.edu (S. J. Murphy). 1 Present address: Department of Neurology, The Affiliated Nanjing Benq Hospital of Nanjing Medical University, Nanjing, P R China 210019. 2 Present address: Department of Neurology at the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P R China 210008. 3 These authors contributed equally to this work. NIH Public Access Author ManuscriptNeuroscience. Author manuscript; available in PMC 2010 August 1. (Selim, 2007). Clinically, there is much interest in pharmacologically preconditioning the human brain with anesthetics and its impact on perioperative stroke, as anesthetic agents are kno...
Recombinant T-cell Receptor Ligand 1000 (RTL1000), a partial human major histocompatibility complex (MHC) molecule coupled to a human myelin peptide, reduces infarct size after experimental stroke in HLA-DRB1*1502 transgenic (DR2-Tg) mice. In this study, we characterized the therapeutic time window of opportunity for RTL1000; we explored the efficacy of single dose of RTL1000 administration and determined if RTL1000 affordslong-term neurobehavioral functional improvement after ischemic stroke. Male DR2-Tg mice underwent 60 min of intraluminal reversible middle cerebral artery occlusion (MCAO). RTL1000 or vehicle was injected 4, 6 or 8 h after MCAO, followed by 3 daily injections. In single dose study, one-time injection of RTL1000 was applied 4 h after MCAO. Cortical, striatal and hemispheric infarct sizes were measured 24 h or 96 h after stroke. Behavioral testing, including neuroscore evaluation, open field, paw preference and novel object recognition was performed up to 28 days after stroke. Our data showed RTL1000 significantly reduced infarct size 96 h after MCAO when first injection was given 4 and 6, but not 8 h after the onset of stroke. A single dose of 400 µg or 100 µg RTL1000 also significantly reduced infarct size 24 h after MCAO. Behavioral testing showed RTL1000 treatment used 4 h after MCAO improved long-term cognitive outcome 28 days after stroke. Taken together, RTL1000 protects against acute injury if applied within a 6-h time window and improves long-term functional recovery after experimental stroke in DR2-Tg mice.
RTL1000 is a partial human MHC molecule coupled to a human myelin peptide. We previously demonstrated that RTL1000 was protective against experimental ischemic stroke in HLA-DR2 transgenic (DR2-Tg) mice. Since thrombolysis with recombinant tissue plasminogen activator (t-PA) is a standard therapy for stroke, we determined if RTL1000 efficacy is altered when combined with t-PA in experimental stroke. Male DR2-Tg mice underwent 60 min of intraluminal middle cerebral artery occlusion (MCAO). t-PA or vehicle was infused intravenously followed by either a single or 4 daily subcutaneous injections of RTL1000 or vehicle. Infarct size was measured by 2, 3, 5-triphenyltetrazolium chloride staining at 24h or 96 h of reperfusion. Our data showed that t-PA alone reduced infarct size when measured at 24 h but not at 96 h after MCAO. RTL1000 alone reduced infarct size both at 24 and 96h after MCAO. Combining RTL1000 with t-PA did not alter its ability to reduce infarct size at either 24 or 96 h after MCAO and provides additional protection in t-PA treated mice at 24 h after ischemic stroke. Taken together, RTL1000 treatment alone improves outcome and provides additional protection in t-PA treated mice in experimental ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.