A barrier to eliminating Plasmodium vivax malaria is inadequate treatment of infected patients. 8-Aminoquinoline–based drugs clear the parasite; however, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk for hemolysis from these drugs. Understanding the performance of G6PD deficiency tests is critical for patient safety. Two quantitative assays and two qualitative tests were evaluated. The comparison of quantitative assays gave a Pearson correlation coefficient of 0.7585 with significant difference in mean G6PD activity, highlighting the need to adhere to a single reference assay. Both qualitative tests had high sensitivity and negative predictive value at a cutoff G6PD value of 40% of normal activity if interpreted conservatively and performed under laboratory conditions. The performance of both tests dropped at a cutoff level of 45%. Cytochemical staining of specimens confirmed that heterozygous females with > 50% G6PD-deficient cells can seem normal by phenotypic tests.
bThe Global Programme to Eliminate Lymphatic Filariasis has an urgent need for rapid assays to detect ongoing transmission of lymphatic filariasis (LF) following multiple rounds of mass drug administration (MDA). Current WHO guidelines support using the antigen card immunochromatographic test (ICT), which detects active filarial infection but does not detect early exposure to LF. Recent studies found that antibody-based assays better serve this function. In the present study, two tests, a rapid IgG4 enzyme-linked immunosorbent assay (ELISA) and a lateral-flow strip immunoassay, were developed based on the highly sensitive and specific Wuchereria bancrofti antigen Wb123. A comparison of W. bancrofti-infected and -uninfected patients (with or without other helminth infections) demonstrated that both tests had high sensitivities and specificities (93 and 97% [ELISA] and 92 and 96% [strips], respectively). When the W. bancrofti-uninfected group was separated into those with other filarial/helminth infections (i.e., onchocerciasis, loiasis, and strongyloidiasis) and those who were parasite uninfected, the specificities of the assays varied between 91 and 100%. In addition, the geometric mean response by ELISA of W. bancrofti-infected patients was significantly higher than the response of those without W. bancrofti infection (P < 0.0001). Furthermore, the Wb123 ELISA and the lateral-flow strips had high positive and negative predictive values, giving valuable information on the size of survey population needed to be reasonably certain whether or not transmission is ongoing. These highly sensitive and specific IgG4 tests to the W. bancrofti Wb123 protein give every indication that they will serve as useful tools for post-MDA monitoring.
BackgroundMedicines that exert oxidative pressure on red blood cells (RBC) can cause severe hemolysis in patients with glucose‐6‐phosphate dehydrogenase (G6PD) deficiency. Due to X‐chromosome inactivation, females heterozygous for G6PD with 1 allele encoding a G6PD‐deficient protein and the other a normal protein produce 2 RBC populations each expressing exclusively 1 allele. The G6PD mosaic is not captured with routine G6PD tests.MethodsAn open‐source software tool for G6PD cytofluorometric data interpretation is described. The tool interprets data in terms of % bright RBC, or cells with normal G6PD activity in specimens collected from 2 geographically and ethnically distinct populations, an African American cohort (USA) and a Karen and Burman ethnic cohort (Thailand) comprising 242 specimens including 89 heterozygous females.ResultsThe tool allowed comparison of data across 2 laboratories and both populations. Hemizygous normal or deficient males and homozygous normal or deficient females cluster at narrow % bright cells with mean values of 96%, or 6% (males) and 97%, or 2% (females), respectively. Heterozygous females show a distribution of 10‐85% bright cells and a mean of 50%. The distributions are associated with the severity of the G6PD mutation.ConclusionsConsistent cytofluorometric G6PD analysis facilitates interlaboratory comparison of cellular G6PD profiles and contributes to understanding primaquine‐associated hemolytic risk.
Cytochemical staining remains an efficient way of identifying females who are heterozygous for the X chromosome-linked glucose-6-phosphate dehydrogenase (G6PD) gene. G6PD is highly polymorphic with certain alleles resulting in low intracellular G6PD activity in red blood cells. Low intracellular G6PD activity is associated with a risk of severe hemolysis when exposed to an oxidative stress such as fava beans, certain drugs and infections. Heterozygous females express the enzyme from both X-chromosome alleles resulting in two red blood cell populations each with G6PD enzyme characteristics representative of each allele; for example, normal and deficient. Cytochemical staining is the only way to determine the relative representation of each allele in red blood cells, a feature that is critical when assessing the risk for severe hemolysis when exposed to an oxidant such as the anti-malarial drug primaquine. This letter discusses red blood cell integrity with respect to the cytofluorometric assays for G6PD activity. An approach to making this test more robust is suggested. The approach makes this test more reliable and extends its use to a broader range of blood specimens.
BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzyme deficiency. It is characterized by abnormally low levels of G6PD activity. Individuals with G6PD deficiency are at risk of undergoing acute haemolysis when exposed to 8‒aminoquinoline-based drugs, such as primaquine. For this reason it is imperative to identify individuals with G6PD deficiency prior to administering these anti-malarial drugs. There is a need for the development and evaluation of point-of-care G6PD deficiency screening tests suitable for areas of the developing world where malarial treatments are frequently administered. The development and evaluation of new G6PD tests will be greatly assisted with the availability of specimen repositories.MethodsCryopreservation of erythrocytes was evaluated as a means to preserve G6PD activity. Blood specimens from 31 patients including ten specimens with normal G6PD activity, three with intermediate activity, and 18 with deficient activity were cryopreserved for up to six months.ResultsGood correlation in G6PD activity between fresh and cryopreserved specimens (R2 = 0.95). The cryopreserved specimens show an overall small drop in mean G6PD activity of 0.23 U/g Hb (P=0.23). Cytochemical staining showed that intracellular G6PD activity distribution within the red blood cell populations is preserved during cryopreservation. Furthermore, the mosaic composition of red blood cells in heterozygous women is also preserved for six months or more. The fluorescent spot and the BinaxNOW qualitative tests for G6PD deficiency also showed high concordance in G6PD status determination between cryopreserved specimens and fresh specimens.ConclusionsA methodology for establishing a specimen panel for evaluation of G6PD tests is described. The approach is similar to that used in several malaria research facilities for the cryopreservation of parasites in clinical specimens and axenic cultures. Specimens stored in this manner will aid both the development and evaluation of current and emerging G6PD tests. The availability of G6PD tests is a critical bottleneck to broader access to drugs that confer radical cure of Plasmodium vivax, a requirement for elimination of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.