Human rhinoviruses (HRVs) are responsible for nearly 50% of all common cold infections. Ordinarily, HRV infections are mild and self-limiting; nonetheless, every year they result in significant loss of economic productivity and substantial inappropriate antibiotic use. Development of effective vaccine and antiviral prophylaxis against HRV has been hampered by the extensive antigenic diversity present among the nearly 100 serotypes. To gain new insights into the evolutionary processes that create the genetic diversity present among HRVs, we tested for recombination and selection for individual genes and the coding genome for 45 HRV serotypes using estimated phylogenetic relationships. Although the structural capsid genes and nonstructural genes recovered incongruent tree topologies, no recombination was detected using substitution methods. Therefore, the coding genome was determined to be appropriate for phylogenetic tests. Results of the Shimodaira-Hasegawa (SH) test support the hypothesis that the capsid genes recover a different evolutionary history than the nonstructural genes. Our best phylogenetic estimate based on the coding genome suggests that HRV-B is more closely related to enterovirus than to HRV-A; however, several alternative phylogenetic hypotheses were not rejected by the SH test. Positive selection was examined by using two different approaches; d(N)/d(S) rate ratio and the physicochemical phenotypes for 31 amino acid properties. Analyses using d(N)/d(S) failed to detect positive selection. However, protein phenotypic expression appears to be a more sensitive approach. There was extensive stabilizing and destabilizing positive selection in HRV-A major and HRV-B serotypes for all proteins, except in 3A in HRV-B, which overlapped with functional, structural, and to a greater extent in uncharacterized genomic regions. In contrast, the evolution of HRV-A minor serotypes appears to be driven primarily by destabilizing selection. Our results demonstrate that HRV-A major, HRV-A minor, and HRV-B serotypes have not been similarly influenced by purifying selection.
Rhinoviruses are the most common causes of the common cold. Their many distinct lineages fall into "major" and "minor" groups that use different cell surface receptors to enter host cells. Minor-group rhinoviruses are more immunogenic in laboratory studies, although their patterns of transmission and their cold symptoms are broadly similar to those of the major group. Here we present evolutionary evidence that minor-group viruses are also more immunogenic in humans. A key finding is that rates of amino acid substitutions at exposed sites in the capsid proteins VP2, VP3, and VP1 tend to be elevated in minor-group relative to majorgroup viruses, while rates at buried sites show no consistent differences. A reanalysis of historical virus watch data also indicates a higher immunogenicity of minor-group viruses, consistent with our findings about evolutionary rates at amino acid positions most directly exposed to immune surveillance. The increased immunogenicity and speed of evolution in minor-group lineages may contribute to the very large numbers of rhinovirus serotypes that coexist while differing in virulence.IMPORTANCE Most colds are caused by rhinoviruses (RVs). Those caused by a subset known as the minor-group members of rhinovirus species A (RV-A) are correlated with the inception and aggravation of asthma in at-risk populations. Genetically, minor-group viruses are similar to major-group RV-A, from which they were derived, although they tend to elicit stronger immune responses. Differences in their rates and patterns of molecular evolution should be highly relevant to their epidemiology. All RV-A strains show high rates of amino acid substitutions in the capsid proteins at exposed sites not previously identified as being immunogenic, and this increase is significantly greater in minor-group viruses. These findings will inform future studies of the recently discovered RV-C, which also appears to exacerbate asthma in adults and children. In addition, these findings draw attention to the difficult problem of explaining the long-term coexistence of many serotypes of major-and minor-group RVs.KEYWORDS human rhinovirus, immunogenicity, major-group rhinoviruses, minor-group rhinoviruses, molecular evolution C old infections are caused by more than 250 virus serotypes belonging to at least five different families. The most common cold-causing viruses are rhinoviruses (RVs) (10 to 50% of all colds), coronaviruses (10 to 15% of all colds), and influenza viruses (5 to 15% of all colds) (1, 2). Globally, RVs are the primary cause of acute upper respiratory tract infections. Although most such infections are mild, RVs can also replicate in the lower respiratory tract and exacerbate the severity of conditions such as chronic respiratory disease and asthma (3-7).Rhinoviruses are nonenveloped, positive-sense, single-stranded RNA viruses belonging to the genus Enterovirus of the family Picornaviridae that infect epithelial cells that
An allopatric population of big-eared climbing rats (Ototylomys) from the Northern Highlands of Chiapas, Mexico, is described as a new species. The new taxon is part of a unique montane rainforest community that includes several other endemic species in the limited geographic range between the Río Grijalva and the Central Depression of Chiapas. Several cranial, external, and molecular characters distinguish this new species of big-eared climbing rat from its more widely distributed congener, Ototylomys phyllotis. We performed principal component and discriminate function analyses of cranial measurements, and found that specimens of the new species consistently could be distinguished from other Ototylomys with strong statistical support. Compared with exemplars of Ototylomys from elsewhere in their range, the new species possesses a karyotype that differs by 3 additional biarmed chromosome pairs, is fixed or nearly fixed for distinct electromorphs at 12 allozyme loci, and the mean genetic distance exceeds 14%, based on comparisons of the mitochondrial cytochrome b gene between the new species of Ototylomys and representatives of O. phyllotis. The restricted distribution in montane karst rainforest suggests that the species and its habitat may be a matter of conservation concern.Una población alopátrica de rata orejuda trepadora (Ototylomys) de las Tierras Altas del Norte de Chiapas, México se describe como una nueva especie. El nuevo taxón es parte de una comunidad única de bosque lluvioso montano que incluye varias especies endémicas en el área de distribución geográfica limitada entre el Río Grijalva y la Depresión Central de Chiapas. Varios caracteres craneales, externos, y moleculares distinguen la nueva rata orejuda trepadora de su congénere más ampliamente distribuido, Ototylomys phyllotis. Se realizaron análisis de componentes principales y de función discriminante de los caracteres craneales, y se encontró que los especímenes de La Pera fueron consistentemente distinguidos de otros Ototylomys con un fuerte soporte estadístico. En comparación con ejemplares de Ototylomys del rango, la nueva especie posee un cariotipo que difiere por 3 pares adicionales de cromosomas biarmados, está fijo o casi fijo por distintos electromorfos en 12 loci alozímicos. Adicionalmente, la media de la distancia genética comparada del gen mitochondrial citocromo b entre la nueva especie de Ototylomys y representantes de O. phyllotis, excede el 14%. La distribución restringida en el bosque lluvioso montano kárstico sugiere que la especie y su hábitat pueden ser de importancia para la conservación.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.