▪ Abstract Agriculture has evolved independently in three insect orders: once in ants, once in termites, and seven times in ambrosia beetles. Although these insect farmers are in some ways quite different from each other, in many more ways they are remarkably similar, suggesting convergent evolution. All propagate their cultivars as clonal monocultures within their nests and, in most cases, clonally across many farmer generations as well. Long-term clonal monoculture presents special problems for disease control, but insect farmers have evolved a combination of strategies to manage crop diseases: They (a) sequester their gardens from the environment; (b) monitor gardens intensively, controlling pathogens early in disease outbreaks; (c) occasionally access population-level reservoirs of genetically variable cultivars, even while propagating clonal monocultures across many farmer generations; and (d) manage, in addition to the primary cultivars, an array of “auxiliary” microbes providing disease suppression and other services. Rather than growing a single cultivar solely for nutrition, insect farmers appear to cultivate, and possibly “artificially select” for, integrated crop-microbe consortia. Indeed, crop domestication in the context of coevolving and codomesticated microbial consortia may explain the 50-million year old agricultural success of insect farmers.
Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 m in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. "Candidatus Sulcia muelleri" is proposed as the name of the new symbiont.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.