The prevalence of obesity has increased substantially over the past decades in most industrialized countries. Obesity is a systemic disease that predisposes to a variety of co-morbidities and complications that affect overall health. Cross-sectional studies suggest that obesity is also associated with oral diseases, particularly periodontal disease, and prospective studies suggest that periodontitis may be related to cardiovascular disease. The possible causal relationship between obesity and periodontitis and potential underlying biological mechanisms remain to be established; however, the adipose tissue actively secretes a variety of cytokines and hormones that are involved in inflammatory processes, pointing toward similar pathways involved in the pathophysiology of obesity, periodontitis, and related inflammatory diseases. We provide an overview of the definition and assessment of obesity and of related chronic diseases and complications that may be important in the periodontist's office. Studies that have examined the association between obesity and periodontitis are reviewed, and adipose-tissue-derived hormones and cytokines that are involved in inflammatory processes and their relationship to periodontitis are discussed. Our aim is to raise the periodontist's awareness when treating obese individuals.
Subjects with RA have significantly increased periodontal attachment loss compared to controls. Oral hygiene may only partially account for this association.
We have previously shown that diabetes significantly enhances apoptosis of osteoblastic cells in vivo and that the enhanced apoptosis contributes to diabetes impaired new bone formation. A potential mechanism is enhanced apoptosis stimulated by advanced glycation endproducts (AGEs). To investigate this further, an advanced glycation product, carboxymethyl lysine modified collagen (CML-collagen) was injected in vivo and stimulated a 5 fold increase in calvarial periosteal cell apoptosis compared to unmodified collagen. It also induced apoptosis in primary cultures of human or neonatal rat osteoblastic cells or MC-3T3-E1 cells in vitro. Moreover, the apoptotic effect was largely mediated through RAGE receptor. CML-collagen increased p38 and JNK activity 3.2 and 4.4 fold, respectively. Inhibition of p38 and JNK reduced CML-collagen stimulated apoptosis by 45% and 59% and by 90% when used together (P<0.05). The predominant apoptotic pathway induced by CML-collagen involved caspase-8 activation of caspase-3 and was independent of NF-κB activation. When osteoblastic cells were exposed to a long-term low dose incubation with CMLcollagen there was a higher degree of apoptosis compared to short term incubation. In more differentiated osteoblastic cultures apoptosis was enhanced even further. These results indicate that advanced glycation endproducts, which accumulate in diabetic and aged individuals may promote apoptosis of osteoblastic cells and contribute to deficient bone formation.
Chronic, plaque-associated inflammation of the gingiva and the periodontium are among the most common oral diseases. Periodontitis (PD) is characterized by the inflammatory destruction of the periodontal attachment and alveolar bone, and its clinical appearance can be influenced by congenital as well as acquired factors. The existence of a rheumatic or other inflammatory systemic disease may promote PD in both its emergence and progress. However, there is evidence that PD maintains systemic diseases. Nevertheless, many mechanisms in the pathogenesis have not yet been examined sufficiently, so that a final explanatory model is still under discussion, and we hereby present arguments in favor of this. In this review, we also discuss in detail the fact that oral bacterial infections and inflammation seem to be linked directly to the etiopathogenesis of rheumatoid arthritis (RA). There are findings that support the hypothesis that oral infections play a role in RA pathogenesis. Of special importance are the impact of periodontal pathogens, such as Porphyromonas gingivalis on citrullination, and the association of PD in RA patients with seropositivity toward rheumatoid factor and the anti-cyclic citrullinated peptide antibody.
Lysyl oxidase is an extracellular enzyme critical for the normal biosynthesis of collagens and elastin. In addition, lysyl oxidase reverts ras-mediated transformation, and lysyl oxidase expression is down-regulated in human cancers. Since suramin inhibits growth factor signaling pathways and induces lysyl oxidase in ras-transformed NIH3T3 cells (RS485 cells), we sought to investigate the effects of suramin on the phenotype of transformed cells and the role of lysyl oxidase in mediating these effects. Suramin treatment resulted in a more normal phenotype as judged by growth rate, cell cycle parameters, and morphology. -aminopropionitrile, the selective inhibitor of lysyl oxidase enzyme activity, was remarkably unable to block suramin-induced reversion. By contrast, ectopic antisense lysyl oxidase demonstrated that lysyl oxidase gene expression mediated phenotypic reversion. Since lysyl oxidase is synthesized as a 50 kDa precursor and processed to a 30 kDa active enzyme and 18 kDa propeptide, the effects of these two products on the transformed phenotype of RS485 cells were then directly assessed in the absence of suramin. Here we report, for the first time, that the lysyl oxidase propeptide, and not the lysyl oxidase enzyme, inhibits ras-dependent transformation as determined by effects on cell proliferation assays, growth in soft agar, and Aktdependent induction of NF-B activity. Thus, the lysyl oxidase propeptide, which is released during extracellular proteolytic processing of pro-lysyl oxidase, functions to inhibit ras-dependent cell transformation.Lysyl oxidase catalyzes oxidative deamination of peptidyl lysine and hydroxylysine residues in collagens, and peptidyl lysine residues in elastin. The resulting peptidyl aldehydes spontaneously condense and undergo oxidation reactions to form the lysine-derived covalent cross-links required for the normal structural integrity of the extracellular matrix (1-3). Lysyl oxidase is synthesized as a 48 -50 kDa proenzyme, secreted into the extracellular environment where it is then processed by proteolytic cleavage to a functional 30 kDa enzyme and an 18 kDa propeptide (4). Evidence supports that 30 kDa lysyl oxidase is active whereas the 50 kDa proenzyme is enzymatically inactive (5-7). Procollagen C-proteinases are active in processing pro-lysyl oxidase and are products of the Bmp1 gene and the structurally related Tll1 and Tll2 genes (6 -8).Lysyl oxidase gene expression was found to inhibit the transforming activity of ras and was hence named the "ras recision gene" (rrg) (9, 10). Lysyl oxidase is down-regulated in rastransformed cells and in many cancer cell lines. Reduced lysyl oxidase levels are also observed in human cancers (9, 11-15), whereas in spontaneous revertants or upon induced phenotypic reversion higher normal levels of lysyl oxidase are again seen (9,14). Conversely stable phenotypic revertants of ras-transfected NIH3T3 cells return to a transformed phenotype upon transfection with an antisense lysyl oxidase vector (9, 10, 16). Antisense lysyl oxidase t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.