We present an autosomal-recessive frontonasal dysplasia (FND) characterized by bilateral extreme microphthalmia, bilateral oblique facial cleft, complete cleft palate, hypertelorism, wide nasal bridge with hypoplasia of the ala nasi, and low-set, posteriorly rotated ears in two distinct families. Using Affymetrix 250K SNP array genotyping and homozygosity mapping, we mapped this clinical entity to chromosome 12q21. In one of the families, three siblings were affected, and CNV analysis of the critical region showed a homozygous 3.7 Mb deletion containing the ALX1 (CART1) gene, which encodes the aristaless-like homeobox 1 transcription factor. In the second family we identified a homozygous donor-splice-site mutation (c.531+1G > A) in the ALX1 gene, providing evidence that complete loss of function of ALX1 protein causes severe disruption of early craniofacial development. Unlike loss of its murine ortholog, loss of human ALX1 does not result in neural-tube defects; however, it does severely affect the orchestrated fusion between frontonasal, nasomedial, nasolateral, and maxillary processes during early-stage embryogenesis. This study further expands the spectrum of the recently recognized autosomal-recessive ALX-related FND phenotype in humans.
Our findings suggest that specific miRNAs are involved in metastasis and have an impact on the progression of the ccRCC. Furthermore, we identified specific miRNAs characterising very aggressive tumours with early metastasis. In addition, we determined candidate markers associated with survival of the patients. Thus, it seems possible to use miRNAs for prediction of progression to distant metastasis and prognosis analysing the primary tumour.
BackgroundMore than 1.2 million new cases of colorectal cancer are reported each year worldwide. Despite actual screening programs, about 50% of the patients are diagnosed at advanced tumor stages presenting poor prognosis. Innovative screening tools could aid the detection at early stages and allow curative treatment interventions.MethodsA nine target multiplex serum protein biochip was generated and evaluated using a training- and validation-set of 317 highly standardized, liquid nitrogen preserved serum samples comprising controls, adenomas, and colon cancers.ResultsSerum levels of CEA, IL-8, VEGF, S100A11, MCSF, C3adesArg, CD26, and CRP showed significant differences between cases and controls. The largest areas under the receiver operating characteristics curve were observed for CEA, IL-8, and CRP. At threshold levels yielding 90% specificity, sensitivities for CEA, IL-8 and CRP were 26%, 22%, and 17%, respectively. The most promising marker combinations were CEA + IL-8 reaching 37% sensitivity at 83% specificity and CEA + CRP with 35% sensitivity at 81% specificity. In an independent validation set CEA + IL-8 reached 47% sensitivity at 86% specificity while CEA + CRP obtained 39% sensitivity at 86% specificity. Early carcinomas were detected with 33% sensitivity for CEA + IL-8 and 28% for CEA + CRP.ConclusionsApart from CEA, IL-8, and CRP, the screening value of additional blood markers and the potential advantage of combining serum biochip testing with fecal occult blood testing needs to be studied. Multiplex biochip array technology utilizing serum samples offers an innovative approach to colorectal cancer screening.
Development and progression of colon cancer may be related to cytokines. Cytokines with diagnostic value have been identified individually but have not been implemented into clinical praxis. Using a multiplex protein array, the authors explore a panel of cytokines simultaneously and compared its performance to carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9). Serum concentrations of 12 cytokines were simultaneously determined by multiplex biochip technology in 50 colon cancer patients and 50 healthy controls. Serum levels of interleukin-8 (IL-8) and CEA were significantly higher in cancer patients than in healthy controls. Areas under the receiver operating characteristic curves (AUCs) were largest for IL-8, followed by CEA, vascular endothelial growth factor (VEGF), and CA 19-9. Analyses regarding marker combinations showed an advantage over single marker performance for CEA, VEGF, and CA 19-9 but not for IL-8. Multiplex biochip array technology represents a practical tool in cytokine and cancer research when simultaneous determination of different biomarkers is of interest. The results suggest that the assessment of IL-8, CEA, VEGF, and possibly CA 19-9 serum levels could be useful for colon cancer screening with the potential of also detecting early stage tumors. Further validation studies using these and additional markers on a multiplex array format are encouraged.
A characteristic of human gastroenteropancreatic neuroendocrine tumors (GEP-NET) is a minute unobtrusive primary tumor which often cannot be detected by common physical examinations. It therefore remains unidentified until the tumor has spread and space-occupying metastases cause clinical symptoms leading to diagnosis. Cases in which the primary cannot be located are referred to as NET with CUP-syndrome (cancer of unknown primary syndrome). With the help of array-CGH (comparative genomic hybridization, Agilent 105K) and gene expression analysis (Agilent 44K), microdissected primaries and their metastases were compared to identify up- and down-regulated genes which can be used as a marker for tumor progression. In a next analysis step, a hierarchical clustering of 41.078 genes revealed three genes [C-type lectin domain family 13 member A (CD302), peptidylprolyl isomerase containing WD40 repeat (PPWD1) and abhydrolase domain containing 14B (ABHD14B)] which expression levels can categorize the metastases into three groups depending on the localization of their primary. Because cancer therapy is dependent on the localization of the primary, the gene expression level of these three genes are promising markers to unravel the CUP syndrome in NET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.