The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers.
cerebral cortex ͉ glutamatergic signaling ͉ regulatory RNA N MDA receptors (NMDA-R) control many executive brain functions, such as working memory, and their dysfunction is implicated in a host of brain disorders (1-4). Notably, hypofunctional NMDA-R signaling, particularly in the prefrontal cortex (PFC), has been implicated in the cognitive and behavioral disturbances characteristic of schizophrenia (5), autism (6, 7), attention deficit hyperactivity disorder (ADHD) (8, 9), mood disorders (10), and other psychiatric illnesses. The cellular mechanisms by which disrupted NMDA-R transmission drives behavioral pathology are still unclear, although several of the major proteins involved in this pathway, such as calcium/calmodulin-dependent protein kinase II (CaMKII) (11), have been identified. In this study, we examine whether neurobehavioral abnormalities associated with NMDA-R hypofunction can be attributed to a novel class of regulatory RNA molecules, microRNAs (miRNAs).miRNAs have attracted much attention as regulators of neuronal development and synaptic plasticity (12-15). Furthermore, psychiatric disorders such as schizophrenia, autism, and Tourette's syndrome are associated with dysregulated levels of miRNAs (16)(17)(18)(19)(20). miRNAs are small (Ϸ22 nt) noncoding transcripts that can control expression of protein-coding mRNAs at the posttranscriptional level (21). Pleiotropic miRNAs can control gene expression by binding to complementary sequences in the 3Ј untranslated region (3Ј UTR) of target mRNA transcripts to facilitate their degradation and/or inhibit their translation (15,22,23). Understanding this layer of gene regulation therefore promises to enrich our knowledge of brain function and pathology. Dizocilpine is a highly selective phencyclidine-like NMDA-R antagonist that can rapidly produce schizophrenia-like behavioral deficits in humans and rodents (24). We examined whether a psychotomimetic dose of dizocilpine (0.5 mg/kg, i.p.) altered miRNA expression in brain regions of C57BL/6 mice, by using miRNA microarray profiling as an initial screening approach. Our analysis was focused on the PFC because of the considerable evidence linking this brain region with behavioral pathology in psychiatric illnesses (19). We extracted the small RNAs from the PFC of the mice 15 min after administration of a single dose of dizocilpine, i.e., a time-point at which dizocilpine-induced behavioral disturbances such as hyperlocomotion and stereotypy are readily observed (25). Of note, there was a robust reduction of miR-219 out of 182 miRNAs detectable by microarray in PFC tissues (Table S1). miR-219 is a conserved miRNA expressed in both rodent and human brains, but not in other tissues (26,27). These data demonstrate that concentrations of a brain-specific miRNA, which may play a role in regulating NMDA-R function, are altered during states of NMDA-R hypofunction.In support of the microarray data, RT-PCR analyses demonstrated that miR-219 levels were significantly reduced by Ϸ50% (a change from an average cycle th...
The presence of an abnormal, protease-resistant form of the prion protein (PrP) is the hallmark of various forms of transmissible spongiform encephalopathies (TSE) which can affect a number of mammalian species, including humans. The normal, cellular form of this protein, PrPc, while abundant in brain is also present in many tissues and a number of species. In order to address the unresolved question of the precise localization of normal cerebral PrPc, we used a free-floating immunohistochemistry procedure to localize the protein at both the light and the electron microscopic levels in the brain of three TSE-sensitive species: hamster, macaque and humans. This method shows that PrPc is abundant in synaptic terminal fields in olfactory bulb, limbic-associated structures and in the striato-nigral complex, whereas many other regions of the hamster brain are essentially devoid of immunoreactivity. With the striking exception of the olfactory nerve, in which axons are continually growing throughout life, PrPc is not abundant in fibre pathways. PrPc distribution in the primate hippocampus and cortex is very similar to the distribution observed in hamster. PrPc was present at synaptic profiles as shown by immunoelectron microscopy, but was not detectable in neuronal perikaryon either by light or electron microscopy. Our results show that PrPc is abundant in a number of brain structures known for ongoing plasticity, and are consistent with the hypothesis that the protein also plays a role in synaptic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.