The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers.
The accumulation of PrPSc in scrapie‐infected neuronal cells has been prevented by three approaches: (i) transfection of ScMNB cells with an antisense laminin receptor precursor (LRP) RNA‐expression plasmid, (ii) transfection of ScN2a cells and ScGT1 cells with small interfering RNAs (siRNAs) specific for the LRP mRNA, and (iii) incubation of ScN2a cells with an anti‐LRP/LR antibody. LRP antisense RNA and LRP siRNAs reduced LRP/LR expression and inhibited the accumulation of PrPSc in these cells. The treatments also reduced PrPc levels. The anti‐LRP/LR antibody, W3, abolished PrPSc accumulation and reduced PrPc levels after seven days of incubation. Cells remained free of PrPSc after being cultured for 14 additional days without the antibody, whereas the PrPc level was restored. Our results demonstrate the necessity of the laminin receptor (LRP/LR) for PrPSc propagation in cultured cells and suggest that LRP/LR‐specific antibodies could be used as powerful therapeutic tools in the treatment of transmissible spongiform encephalopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.