The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.
A small quantity of nanodiamonds (NDs) was dispersed in a nematic liquid crystal (LC), and the NDs were found to exhibit an anisotropic self-assembly along the nematic director. The anisotropic assembly of the NDs in the LC matrix was probed by measuring the dielectric anisotropy, Δε, of the LC+ND system, which showed a significant increase in Δε. Additional studies revealed that the presence of NDs reduced the rotational viscosity and the pretilt angle of the LC. The studies were carried out with several ND concentrations in the LC and the experimental results coherently suggest that there exists an optimal concentration of ND. Above this optimal ND concentration, the anisotropic assembly of the NDs was found to be not effective anymore. The rotational viscosity and the pretilt angle of the LC were found to increase above the optimal concentration of ND.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.