Objective
Laser‐based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values.
Methods
Fifteen healthy volunteers (53% female, median age 29 [IQR 22–40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis.
Results
Baseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline.
Discussion
LSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Background
It is unknown whether lung-protective ventilation is applied in burn patients and whether they benefit from it. This study aimed to determine ventilation practices in burn intensive care units (ICUs) and investigate the association between lung-protective ventilation and the number of ventilator-free days and alive at day 28 (VFD-28).
Methods
This is an international prospective observational cohort study including adult burn patients requiring mechanical ventilation. Low tidal volume (VT) was defined as VT ≤ 8 mL/kg predicted body weight (PBW). Levels of positive end-expiratory pressure (PEEP) and maximum airway pressures were collected. The association between VT and VFD-28 was analyzed using a competing risk model. Ventilation settings were presented for all patients, focusing on the first day of ventilation. We also compared ventilation settings between patients with and without inhalation trauma.
Results
A total of 160 patients from 28 ICUs in 16 countries were included. Low VT was used in 74% of patients, median VT size was 7.3 [interquartile range (IQR) 6.2–8.3] mL/kg PBW and did not differ between patients with and without inhalation trauma (p = 0.58). Median VFD-28 was 17 (IQR 0–26), without a difference between ventilation with low or high VT (p = 0.98). All patients were ventilated with PEEP levels ≥5 cmH2O; 80% of patients had maximum airway pressures <30 cmH2O.
Conclusion
In this international cohort study we found that lung-protective ventilation is used in the majority of burn patients, irrespective of the presence of inhalation trauma. Use of low VT was not associated with a reduction in VFD-28.
Trial registration
Clinicaltrials.gov NCT02312869. Date of registration: 9 December 2014.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.