The endemic fauna of the Comoro Archipelago is composed of a mixture of taxa originating from Africa and Madagascar. Bats are the only native land dwelling mammals on this archipelago, but the biogeographical origins for the vast majority of species within this group are ambiguous. We report here genetic analyses based on two mitochondrial DNA markers to infer the origin of Comorian bats belonging to a reputed species complex of Miniopterus that is further distributed across Africa and Madagascar. Phylogenetic reconstructions show that east African M. minor are not closely related to the insular Miniopterus of Madagascar and the Comoros (Grande Comore and Anjouan). The latter cluster into two distinct, monophyletic clades (Clade 1 and Clade 2). Representatives of these clades occur sympatrically both on the Comoros and on Madagascar, and are distinguished by a large genetic distance (K2P: 9.9% for cytochrome b). No haplotypes are shared between any islands, suggesting the absence of contemporary gene flow. Populations of the widespread Clade 1 are furthermore characterized by a significant inter-island structure (Phi(CT) = 0.249), and by high haplotype and nucleotide diversities (h = 0.90-0.98, pi = 0.04-0.06). Demographic analyses of Clade 1 suggest secondary contact between two distinct phylogroups (Subclade 1 A and 1B) that reached Grande Comore and Anjouan, and a large, stable population with a long evolutionary history on Madagascar. These results and the current distribution of related lineages suggest that the Comoros were colonized independently at least two or three times by ancestors from Madagascar.
The use of molecular and morphological characters to resolve the taxonomic identity of cryptic species: the case of Miniopterus manavi (Chiroptera, Miniopteridae).-Zoologica Scripta , 38 , 339-363. Based on recent molecular phylogenetic studies, the Old World bat family Miniopteridae, composed of species in the genus Miniopterus , has been shown to contain complex paraphyletic species, many of which are cryptic based on convergent morphological characters. Herein we resolve the phylogenetic relationships and taxonomy of the species complex M . manavi on Madagascar and in the Comoro Archipelago, where these animals occur in different bioclimatic zones. First using mitochondrial cytochrome-b sequence data to define clades and then morphology to corroborate the molecular data, including comparisons to type specimens, we demonstrate that animals identified as this taxon are a minimum of three species: M . manavi sensu stricto occurs in at least the central portion of the Central Highlands; M . griveaudi has a broad distribution in lowland northern and central western Madagascar and the Comoros (Anjouan and Grande Comore), and M . aelleni sp. n. has been found in northern and western Madagascar and the Comoros (Anjouan). In each case, these three clades were genetically divergent and monophyletic and the taxa are diagnosable based on different external and craniodental characters. One aspect that helped to define the systematics of this group was isolation of DNA from one of the paratypes of M. manavi collected in 1896 and new topotypic material. Miniopterus manavi is most closely allied to a recently described species, M. petersoni . At several localities, M . griveaudi and M . aelleni have been found in strict sympatry, and together with M. manavi sensu stricto show considerable convergence in morphological characters, but are not immediate sister taxa. In defining and resolving the systematics of cryptic species, such as miniopterid bats, the process of defining clades with molecular tools, segregating the specimens accordingly, and identifying corroborative morphological characters has been notably efficient.
Aim Three mechanisms have been proposed to explain the adaptive radiations and species diversifications of Madagascar's biota: the ecogeographical constraint, the riverine barrier and the micro-endemism models. On the intraspecific level, each model predicts different patterns of gene flow across the island's physical and ecological features. To evaluate these models, phylogeographical analyses were conducted on a widespread and endemic species of bat, Myotis goudoti (Vespertilionidae). Location Madagascar.Methods In order to reconstruct the phylogeographical history of M. goudoti, the mitochondrial D-loop and the cytochrome b gene were sequenced for 195 bats from 41 localities. Phylogenetic reconstructions and a minimum spanning tree were used to infer haplotype relationships. The effect of barriers on gene flow was evaluated using analyses of molecular variance and pairwise population differentiation. Mismatch distribution and coalescence-based estimates were conducted to infer the demographic history of M. goudoti. ResultsThe sequenced individuals showed 159 distinct D-loop haplotypes, most of them being unique to a single location. Populations were significantly structured (F ST = 0.170, P < 0.001) across Madagascar, but only a minor part of the overall genetic variance was explained by any of the three models. Shared ancestry of lineages across most physical or ecological barriers was common, whereas the uncovered genetic differences between southern and central-northern populations were unexpected.Main conclusions Major barriers predicted by the three biogeographical models do not explain the segregation of mitochondrial lineages of M. goudoti across Madagascar. This is not simply attributable to the high dispersal ability of this species, as populations are notably structured. The genetic contrast between southern and central-northern populations, separated by a zone of admixture, suggests that these areas currently support populations that expanded during the Late Pleistocene. This latitudinal differentiation of populations has been observed in less vagile animals, such as geckos and lemurs, suggesting that climate fluctuations of the Pleistocene had an impact across several groups and resulted in northern and southern refugia in Madagascar.
Eocene ocean currents and prevailing winds correlate with over‐water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni‐ and bi‐parentally inherited markers with different evolutionary rates. Coalescence‐based analyses of mitochondrial matrilines support a Pleistocene (approximately 180 000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.