When proteostasis becomes unbalanced, unfolded proteins can accumulate and aggregate. Here we report that the dye, tetraphenylethene maleimide (TPE-MI) can be used to measure cellular unfolded protein load. TPE-MI fluorescence is activated upon labelling free cysteine thiols, normally buried in the core of globular proteins that are exposed upon unfolding. Crucially TPE-MI does not become fluorescent when conjugated to soluble glutathione. We find that TPE-MI fluorescence is enhanced upon reaction with cellular proteomes under conditions promoting accumulation of unfolded proteins. TPE-MI reactivity can be used to track which proteins expose more cysteine residues under stress through proteomic analysis. We show that TPE-MI can report imbalances in proteostasis in induced pluripotent stem cell models of Huntington disease, as well as cells transfected with mutant Huntington exon 1 before the formation of visible aggregates. TPE-MI also detects protein damage following dihydroartemisinin treatment of the malaria parasites Plasmodium falciparum. TPE-MI therefore holds promise as a tool to probe proteostasis mechanisms in disease.
This study used immunohistochemistry, retrograde tracing, and high-resolution confocal microscopy to explore the structure and neurochemistry of nerve terminals in the corneal epithelium of mice and guinea pigs. In both species, sub-basal nerves formed a plexus in the basal epithelium. Some axons had bulbar endings within the basal epithelium, but most projected perpendicularly from sub-basal nerves to within a few micrometers of the epithelial surface. Three morphologies for these nerve terminals were identified. Simple terminals did not branch after leaving the sub-basal nerves and ended with a single, bulbar swelling. Ramifying terminals branched in the squamous cell layer, forming horizontal fibers that ran parallel to the surface and terminated with single bulbar swellings. Complex terminals branched as they approached the epithelial surface, forming a cluster of highly branched fibers with multiple bulbar endings. Calcitonin gene-related peptide immunolabeled (peptidergic) axons ended mostly in simple terminals, whereas transient receptor potential cation channel subfamily M member 8 immunolabeled (cold receptor) axons ended almost exclusively in complex terminals. Retrograde labeling identified discrete subpopulations of corneal afferent neurons in the trigeminal ganglion. Tyrosine hydroxylase-immunolabeled (sympathetic) nerve terminals originating from the superior cervical ganglion occurred throughout the corneal epithelium of mice, but only in the basal epithelium of guinea pigs. These findings demonstrate that nerve terminals in the corneal epithelium of mice and guinea pigs can be distinguished on the basis of their morphology and neurochemistry, and suggest that nerve terminals with different sensory modalities can be defined on the basis of their morphology.
The pool of quality control proteins (QC) that maintains protein-folding homeostasis (proteostasis) is dynamic but can become depleted in human disease. A challenge has been in quantitatively defining the depth of the QC pool. With a new biosensor, flow cytometry-based methods and mathematical modeling we measure the QC capacity to act as holdases and suppress biosensor aggregation. The biosensor system comprises a series of barnase kernels with differing folding stability that engage primarily with HSP70 and HSP90 family proteins. Conditions of proteostasis stimulation and stress alter QC holdase activity and aggregation rates. The method reveals the HSP70 chaperone cycle to be rate limited by HSP70 holdase activity under normal conditions, but this is overcome by increasing levels of the BAG1 nucleotide exchange factor to HSPA1A or activation of the heat shock gene cluster by HSF1 overexpression. This scheme opens new paths for biosensors of disease and proteostasis systems.
Methods to promote myelin regeneration in response to central myelin loss are essential to prevent the progression of clinical disability in demyelinating diseases. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to promote myelination during development via oligodendrocyte expressed TrkB receptors. Here, we use a structural mimetic of BDNF to promote myelin regeneration in a preclinical mouse model of central demyelination. In female mice, we show that selective targeting of TrkB with the BDNF-mimetic enhances remyelination, increasing oligodendrocyte differentiation, the frequency of myelinated axons, and myelin sheath thickness after a demyelinating insult. Treatment with exogenous BDNF exerted an attenuated effect, increasing myelin sheath thickness only. Further, following conditional deletion of TrkB from premyelinating oligodendrocytes, we show the effects of the BDNF-mimetic on oligodendrocyte differentiation and remyelination are lost, indicating these are dependent on oligodendrocyte expression of TrkB. Overall, these studies demonstrate that targeting oligodendrocyte TrkB promotes remyelination in the brain. Novel strategies to promote myelin regeneration are required to prevent progressive neurodegeneration and clinical disability in patients with central demyelinating disease. Here, we test whether selectively targeting the TrkB receptor on the myelin-producing oligodendrocytes, can promote remyelination in the brain. Using a structural mimetic of its native ligand, BDNF, we show that stimulation of TrkB enhances remyelination, increasing oligodendrocyte differentiation, the frequency of myelinated axons and thickness of the myelin sheath following a demyelinating insult. Further, we show that these effects are dependent on the phosphorylation of oligodendrocyte expressed TrkB receptors Overall, we demonstrate that selective targeting of TrkB has therapeutic potential to promote remyelination in the brain.
Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.