Upon perception of a noxious stimulus, an organism executes defense mechanisms, such as escape responses. The molecular basis of these mechanisms is poorly understood. In this paper we show that upon exposure to noxious temperature, Caenorhabditis elegans reacts by a withdrawal reflex. To analyze this thermal avoidance behavior, we developed a laser-based assay to quantify the response. The escape reflex can be observed in 98% of the adult animals, but is not executed in animals in diapause. The thermal avoidance response differs significantly from the thermotaxis behavior that is based on the perception of physiological temperature. It involves different neurons and is influenced by mutations in distinct genes. As in mammals, the strength of the thermal avoidance response is increased by application of capsaicin, the pungent ingredient in chili peppers. We find that thermal avoidance is strongly reduced in mutants affecting the neural transmission modulated by glutamate and neuropeptides as well as in mutants affecting the structure and function of sensory neurons. We suggest that the study of this nociceptive behavior in C. elegans can be used to understand the genetic and molecular basis of thermal nociception.Every organism depends on a set of regulatory, protective behaviors to ensure survival. Upon exposure to a noxious mechanical, chemical, or thermal stimulus, animals execute a protective withdrawal-reflex program to prevent cellular damage. In the central nervous system, aversive and protective reactions to these stimuli include the sensation of pain. Whereas the perception of pain may be silenced during anesthesia, nociceptive reflexes by the peripheral nervous system are still executed (1).In vertebrates, the presence of tissue-damaging stimuli or the existence of tissue damage are sensed by primary afferent neurons. These, in general, respond only to high intensities of a stimulus and correspond either to a single sensory modality or are polymodal (are stimulated, for example, by mechanical or thermal stimuli). Several animal and in vitro models have been established to study the physiological and pharmacological parameters that interfere with pain perception and nociception. Recently, cell culture experiments suggested that the vanilloid receptor VR1 is activated both by capsaicin and by noxious heat (2, 3). VR1 belongs to the evolutionary conserved TRP (transient receptor potential) family of nonselective ion channels and is located in sensory nerve endings of the dorsal root ganglion. Despite this finding, little is known about the molecular mechanisms of nociception.The nematode Caenorhabditis elegans is an excellent organism in which to study the behavioral responses to noxious environmental stimuli. Its powerful genetics and the simple nervous system have greatly facilitated the identification of the neural circuits and genes involved in various avoidance reactions such as its response to noxious chemicals, high osmolarities, acidic pH (4), and noxious mechanical stimuli (5).We show her...
The p53 tumor suppressor promotes apoptosis in response to DNA damage. Here we describe the Caenorhabditis elegans gene ced-13, which encodes a conserved BH3-only protein.We show that ced-13 mRNA accumulates following DNA damage, and that this accumulation is dependent on an intact C. elegans cep-1/p53 gene. We demonstrate that CED-13 protein physically interacts with the antiapoptotic Bcl-2-related protein CED-9. Furthermore, overexpression of ced-13 in somatic cells leads to the death of cells that normally survive, and this death requires the core apoptotic pathway of C. elegans. Recent studies have implicated two BH3-only proteins, Noxa and PUMA, in p53-induced apoptosis in mammals. Our studies suggest that in addition to the BH3-only protein EGL-1, CED-13 might also promote apoptosis in the C. elegans germ line in response to p53 activation. We propose that an evolutionarily conserved pathway exists in which p53 promotes cell death by inducing expression of two BH3-only genes.
We describe a modification of the tetracycline-inducible eukaryotic gene expression system with decreased basal levels of expression in HeLa cells. It employs the tetracycline-inducible transactivator and a tetracycline-regulated repressor fusion acting on the same promoter. To avoid heterodimerization or competition for the same DNA site, each was provided with different DNA recognition and/or protein dimerization specificities. We achieved active silencing in the uninduced state resulting in approximately 6-fold reduced levels of basal transcription and several hundred-fold activation of gene expression upon addition of tetracycline.
The Alzheimer's disease (AD) associated presenilin (PS) proteins are proteolytically processed. One of the processing pathways involves cleavage by caspases. Pharmacological inhibition of caspases is currently being discussed as a treatment for a variety of neurodegenerative diseases, including AD. We therefore inhibited caspase mediated processing of PS-1 and PS-2 in cells transfected with wt and mutant PS by mutagenizing the substrate recognition site or by using specific peptide aldehydes known to block caspases. We found that the inhibition of caspase mediated processing of PS proteins does not decrease its amyloidogenic activity. PS cDNA constructs with mutations in the caspase cleavage site are biologically active in Caenorhabditis elegans such as the wt human PS proteins, demonstrating that caspase-mediated cleavage is not required for the physiological PS function in NOTCH signaling.
Mutations in the human presenilin genes cause the most frequent and aggressive forms of familial Alzheimer's disease (FAD). Here we show that in addition to its role in cell fate decisions in non-neuronal tissues, presenilin activity is required in terminally differentiated neurons in vivo. Mutations in the Caenorhabditis elegans presenilin genes sel-12 and hop-1 result in a defect in the temperature memory of the animals. This defect is caused by the loss of presenilin function in two cholinergic interneurons that display neurite morphology defects in presenilin mutants. The morphology and function of the affected neurons in sel-12 mutant animals can be restored by expressing sel-12 only in these cells. The wild-type human presenilin PS1, but not the FAD mutant PS1 A246E, can also rescue these morphological defects. As lin-12 mutant animals display similar morphological and functional defects to presenilin mutants, we suggest that presenilins mediate their activity in postmitotic neurons by facilitating Notch signalling. These data indicate cell-autonomous and evolutionarily conserved control of neural morphology and function by presenilins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.