This paper describes the application of exfoliated graphite nanoplatelets (xGnP) decorated with gold nanoparticles (AuNP) for the development of a label‐free electrochemical immunosensor for the determination of human cardiac troponin T (TnT), an important cardiac biomarker in the diagnosis of acute myocardial infarction (AMI). Heparin‐stabilized AuNP (AuNP‐Hep) were synthesized, characterized and supported on xGnP. The material obtained (AuNP‐Hep‐xGnP) was used as a platform to immobilize the anti‐TnT by adsorption and this was then applied in the construction of an immunosensor. Under optimized conditions, using differential pulse voltammetry (DPV) and an incubation time of 20 min, the proposed immunosensor showed linearity in the range of 0.050 to 0.35 ng mL−1 TnT, with a calculated limit of detection of 0.016 ng mL−1. The interday precision (n=7) showed a coefficient of variation of 6.5 %. Some potential interferents commonly present in blood plasma samples were investigated and the degree of interference was found to be low (less than 10 %), demonstrating adequate selectivity for analytical applications. The biosensor was successfully applied in the determination of TnT in fortified samples of human blood plasma.
A label‐free electrochemical immunosensor based on the liquid crystal (E)‐1‐decyl‐4‐[(4‐decyloxyphenyl)diazenyl]pyridinium bromide (Br−Py), together with heparin‐stabilized gold nanoparticles (AuNP‐Hep) and Nafion is proposed for the determination of prostate‐specific antigen (PSA). The Br−Py liquid crystal presented redox properties and good film‐forming abilities on the electrode surface, and thus it is a suitable alternative as a redox probe for a label‐free electrochemical immunosensor, which could simplify the analysis methodology. The stepwise construction of the immunosensor and the incubation process (immunocomplex formation) were characterized by voltammetry and electrochemical impedance spectroscopy. The proposed immunosensor could directly detect PSA concentrations in the incubation samples, based on the suppression of the Br−Py redox peak (‘base peak’) current. After optimization, the immunosensor exhibited a linear response to PSA concentrations in the range of 0.1 to 50 ng mL−1, with a calculated detection limit of 0.08 ng mL−1. The reproducibility (coefficient of variance less than 3.0 %), selectivity and accuracy of the methodology were adequate. The immunosensor was satisfactorily applied in the quantification of PSA in human blood plasma samples.
Microcystins are potent hepatotoxins produced by cyanobacteria, which proliferate in wastewaters with high nutrient content. Due to their high toxicity and potential risk to human health, even at low concentrations, the development of a sensitive and rapid method for the monitoring of microcystin‐LR (MC‐LR) in water samples is of great importance. In this context, a new direct electrochemical nano‐immunosensor for MC‐LR detection using the liquid crystal (E)‐1‐decyl‐4‐[(4‐decyloxyphenyl)diazenyl]pyridinium bromide (Br‐Py) as a redox probe and gold nanoparticles stabilized in bovine serum albumin (AuNP‐BSA) is described herein. The microcystin‐LR antibody (anti‐MC‐LR) was covalently immobilized using N‐(3‐dimethylaminopropyl)‐N‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS) on an AuNP‐BSA/BrPy film. The proposed sensor response is based on the inhibition of the Br‐Py electrochemical signal after the specific interaction of MC‐LR with immobilized anti‐MC‐LR on the electrode surface. The electrochemical behavior of the immunosensor was studied by square‐wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, using SWV and an incubation time of 15 min, the immunosensor exhibits a linear response to MC‐LR concentrations of 0.05 to 500.0 ng mL−1 with a detection limit of 0.05 ng mL−1. The anti‐MC‐LR/AuNP‐BSA/Br‐Py/GCE was successfully applied in the determination of MC‐LR in spiked seawater samples.
This paper describes the development of a label-free electrochemical immunosensor based on polyethyleneimine-stabilized magnetite nanoparticles (MGNnP-PEI) for the determination of microcystin-LR (MC-LR). MGNnP-PEI was immobilized on the glassy carbon electrode (GCE) surface and employed as a platform for anchorage of the anti-MC-LR. Hydroqui-none in solution was used as a redox probe. After optimization, the immunosensor exhibited a linear response to MC-LR concentrations in the range of 0.1 to 500 ng mL À 1 with a calculated detection limit of 0.053 ng mL À 1. The immunosensor was satisfactorily applied in the quantification of MC-LR in a water sample collected from a freshwater lagoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.