Numerous studies have shown the presence of DNA strand breaks in human ejaculated spermatozoa. The nature of this nuclear anomaly and its relationship to patient etiology is however poorly understood. The aim of this study was to investigate the relationship between nuclear DNA damage, assessed using the TUNEL assay and a number of key apoptotic markers, including Fas, Bcl-x, and p53, in ejaculated human spermatozoa from men with normal and abnormal semen parameters. We also determined the nature of the DNA damage by examining the percentage of ejaculated spermatozoa exhibiting DNA damage using the comet assay and by challenging sperm chromatin to attack by micrococcal nuclease S7 and DNase I. We show that TUNEL positivity and apoptotic markers do not always exist in unison; however, semen samples that had a low sperm concentration and poor morphology were more likely to show high levels of TUNEL positivity and Fas and p53 expression. In addition, the DNA damage in ejaculated human sperm is represented by both single- and double-stranded DNA breaks, and access to the DNA is restricted by the compacted nature of ejaculated spermatozoa. This DNA protection is poorer in men with abnormal semen parameters. We propose that the presence of DNA damage is not directly linked to an apoptotic process occurring in spermatozoa and arises due to problems in the nuclear remodeling process. Subsequently, the presence of apoptotic proteins in ejaculated spermatozoa may be linked to defects in cytoplasmic remodeling during the later stages of spermatogenesis.
Sperm DNA fragmentation seems to affect embryo post-implantation development in ICSI procedures: high sperm DNA fragmentation can compromise 'embryo viability', resulting in pregnancy loss.
Forty-one percent of mosaic embryos produced an ongoing implantation. Complex mosaic blastocysts had a lower OIR than other mosaics. Mosaic monosomies performed as well as mosaic trisomies and mosaic segmental aneuploidies. The results suggest that embryos with >40% abnormal cells and those with multiple mosaic abnormalities (chaotic mosaics) are likely to have lower OIRs and should be given low transfer priority.
Cryopreservation of human spermatozoa—introduced in the 1960's—has been recognized as an efficient procedure for management of male fertility before therapy for malignant diseases, vasectomy or surgical infertility treatments, to store donor and partner spermatozoa before assisted reproduction treatments and to ensure the recovery of a small number of spermatozoa in severe male factor infertility. Despite the usefulness of it, cryopreservation may lead to deleterious changes of sperm structure and function: while the effects of cryopreservation on cells are well documented, to date there is no agreement in the literature on whether or not cryopreservation affects sperm chromatin integrity or on the use of a unique and functional protocol for the freezing-thawing procedure. Therefore, sperm cryopreservation is an important component of fertility management and much of its successful application seems to affect the reproductive outcome of assisted reproduction technologies (ART): appropriate use of cryoprotectants before and sperm selection technologies after cryopreservation seem to have the greatest impact on preventing DNA fragmentation, thus improving sperm cryosurvival rates.
Preimplantation genetic testing for aneuploidy (PGT-A) is widely used in IVF and aims to improve outcomes by avoiding aneuploid embryo transfers. Chromosomal mosaicism is extremely common in early development and could affect the efficacy of PGT-A by causing incorrect embryo classification. Recent innovations have allowed accurate mosaicism detection in trophectoderm samples taken from blastocysts. However, there is little data concerning the impact of mosaicism on viability, and the optimal clinical pathway for such embryos is unclear. This study provides new information concerning the extent to which mosaic preimplantation embryos are capable of producing pregnancies and births. Archived trophectoderm biopsy specimens from transferred blastocysts were analyzed using next generation sequencing (NGS). Unlike other PGT-A methods, NGS accurately detects mosaicism in embryo biopsies. 44 mosaic blastocysts were identified. Their clinical outcomes were compared to 51 euploid blastocysts, derived from a well-matched, contemporary control group. Mosaic embryos were associated with outcomes that were significantly poorer than those of the control group: implantation 30.1 versus 55.8% (P = 0.038); miscarriage rate 55.6 versus 17.2% (P = 0.036); and ongoing pregnancy 15.4 versus 46.2% (P = 0.003). 61% of the mosaic errors affected whole chromosomes and 39% were segmental aneuploidies. Embryo viability is compromised by the presence of aneuploid cells. However, a minority of affected embryos can produce successful pregnancies. Hence, such embryos should not necessarily be excluded, but given a lower priority for transfer than those that are fully euploid. It is recommended that pregnancies established after mosaic embryo transfers be subjected to prenatal testing, with appropriate patient counselling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.