Asian options incorporate the average stock price in the terminal payoff. Examination of the Asian option partial differential equation (PDE) has resulted in many equations of reduced order that in general can be mapped into each other, although this is not always shown. In the literature these reductions and mappings are typically acquired via inspection or ad hoc methods. In this paper, we evaluate the classical Lie point symmetries of the Asian option PDE. We subsequently use these symmetries with Lie's systematic and algorithmic methods to show that one can obtain the same aforementioned results. In fact we find a familiar analytical solution in terms of a Laplace transform. Thus, when coupled with their methodic virtues, the Lie techniques reduce the amount of intuition usually required when working with differential equations in finance.
Communicated by J. BanasiakAsian options are useful financial products as they guard against large price manipulations near the termination date of the contract. In addition, they are often cheaper than their vanilla European counterparts. Previous analyses of the Asian option partial differential equation (PDE) have obtained analytical solutions for the fixed strike (arithmetically averaged) Asian option (and then only with certain assumptions on the boundary conditions). Using Lie symmetry analysis we obtain an optimal system of Lie point symmetries and demonstrate that many (usually ad hoc) reductions of the Asian option PDE are contained in this minimal set. We analyse each reduction member and the feasibility of its resulting invariant solution with the boundary conditions. We show that the numerical simulations on a reduced equation are more efficient than on the original specified problem. In addition, we have found new analytical solutions in terms of Fourier transforms for the floating strike Asian option as well as the fixed strike Asian option without the simplification of the domain.
Second-and third-order scalar ordinary differential equations of maximal symmetry in the traditional sense of point, respectively contact, symmetry are examined for the mappings they produce in solutions and fundamental first integrals. The properties of the 'exceptional symmetries', i.e. those not considered to be generic to scalar equations of maximal symmetry, can be recast into a form which is applicable to all such equations of maximal symmetry. Some properties of these symmetries are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.