WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tree further classified Group II into five sub-groups. All StWRKY genes except StWRKY79 were mapped on potato chromosomes, with eight tandem duplication gene pairs and seven segmental duplication gene pairs found from StWRKY family genes. The expression analysis of 22 StWRKYs showed their differential expression levels under various stress conditions. Cis-element prediction showed that a large number of elements related to drought, heat and salicylic acid were present in the promotor regions of StWRKY genes. The expression analysis indicated that seven StWRKYs seemed to respond to stress (heat, drought and salinity) and salicylic acid treatment. These genes are candidates for abiotic stress signaling for further research.
The accumulation of secondary metabolites, such as anthocyanins, in cells plays an important role in colored plants. The synthesis and accumulation of anthocyanins are regulated by multiple genes, of which the R2R3-MYB transcription factor gene family plays an important role. Based on the genomic data in the Potato Genome Sequencing Consortium database (PGSC) and the transcriptome data in the SRA, this study used potato as a model plant to comprehensively analyze the plant anthocyanin accumulation process. The results indicated that the most critical step in the synthesis of potato anthocyanins was the formation of p -coumaroyl-CoA to enter the flavonoid biosynthetic pathway. The up-regulated expression of the CHS gene and the down-regulated expression of HCT significantly promoted this process. At the same time, the anthocyanins in the potato were gradually synthesized during the process from leaf transport to tubers. New transcripts of stAN1 and PAL were cloned and named stAN1-like and PAL-like , respectively, but the functions of these two new transcripts still need further study. In addition, the sequence characteristics of amino acids in the R2-MYB and R3-MYB domains of potato were preliminarily identified. The aims of this study are to identify the crucial major genes that affect anthocyanin biosynthesis through multi-omics joint analysis and to transform quantitative traits into quality traits, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis. Simultaneously, this study provides the basis for improving the anthocyanin content in potato tubers and the cultivation of new potato varieties with high anthocyanin content.
Background Anthocyanins, which account for color variation and remove reactive oxygen species, are widely synthesized in plant tissues and organs. Using targeted metabolomics and nanopore full-length transcriptomics, including differential gene expression analysis, we aimed to reveal potato leaf anthocyanin biosynthetic pathways in different colored potato varieties. Results Metabolomics analysis revealed 17 anthocyanins. Their levels varied significantly between the different colored varieties, explaining the leaf color differences. The leaves of the Purple Rose2 (PurpleR2) variety contained more petunidin 3-O-glucoside and malvidin 3-O-glucoside than the leaves of other varieties, whereas leaves of Red Rose3 (RedR3) contained more pelargonidin 3-O-glucoside than the leaves of other varieties. In total, 114 genes with significantly different expression were identified in the leaves of the three potato varieties. These included structural anthocyanin synthesis–regulating genes such as F3H, CHS, CHI, DFR, and anthocyanidin synthase and transcription factors belonging to multiple families such as C3H, MYB, ERF, NAC, bHLH, and WRKY. We selected an MYB family transcription factor to construct overexpression tobacco plants; overexpression of this factor promoted anthocyanin accumulation, turning the leaves purple and increasing their malvidin 3-o-glucoside and petunidin 3-o-glucoside content. Conclusions This study elucidates the effects of anthocyanin-related metabolites on potato leaves and identifies anthocyanin metabolic network candidate genes.
4-coumarate: CoA ligase (4CL) is not only involved in the biosynthetic processes of flavonoids and lignin in plants but is also closely related to plant tolerance to abiotic stress. UV irradiation can activate the expression of 4CL genes in plants, and the expression of 4CL genes changed significantly in response to different phytohormone treatments. Although the 4CL gene has been cloned in potatoes, there have been fewer related studies of the 4CL gene family on the potato genome-wide scale. In this study, a total of 10 potato 4CL genes were identified in the potato whole genome. Through multiple sequence alignment, phylogenetic analysis as well as gene structure analysis indicated that the potato 4CL gene family could be divided into two subgroups. Combined with promoter cis-acting element analysis, transcriptome data, and RT-qPCR results indicated that potato 4CL gene family was involved in potato response to white light, UV irradiation, ABA treatment, MeJA treatment, and PEG simulated drought stress. Abiotic stresses such as UV, ABA, MeJA, and PEG could promote the up-regulated expression of St4CL6 and St4CL8 but inhibits the expression of St4CL5. The above results will increase our understanding of the evolution and expression regulation of the potato 4CL gene family and provide reference value for further research on the molecular biological mechanism of 4CL participating in response to diverse environmental signals in potatoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.