Objective-To investigate whether semen quality has changed during the past 50 years.Design-Review of publications on semen quality in men without a history of infertility selected by means of Cumulated Index Medicus and Current List (1930-1965) and MEDLINE Silver Platter database (1966( -August 1991.Subjects-14947 men included in a total of 61 papers published between 1938 and 1991.Main outcome measures-Mean sperm density and mean seminal volume.Results-Linear regression of data weighted by number of men in each study showed a significant decrease in mean sperm count from 113 x 106/ml in 1940 to 66x 106/ml in 1990 (p<0-0001) and in seminal volume from 3*40 ml to 2-75 ml (p=0.027), indicating an even more pronounced decrease in sperm production than expressed by the decline in sperm density.Conclusions-There has been a genuine decline in semen quality over the past 50 years. As male fertility is to some extent correlated with sperm count the results may reflect an overall reduction in male fertility. The biological significance ofthese changes is emphasised by a concomitant increase in the incidence of genitourinary abnormalities such as testicular cancer and possibly also cryptorchidism and hypospadias, suggesting a growing impact of factors with serious effects on male gonadal function.
An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive "safe" dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures.
There is growing evidence that environmental chemicals can disrupt endocrine systems. Most evidence originates from studies on reproductive organs. However, there is also suspicion that thyroid homeostasis may be disrupted. Several groups of chemicals have potential for thyroid disruption. There is substantial evidence that polychlorinated biphenyls, dioxins and furans cause hypothyroidism in exposed animals and that environmentally occurring doses affect human thyroid homeostasis. Similarly, flame retardants reduce peripheral thyroid hormone (TH) levels in rodents, but human studies are scarce. Studies also indicate thyroid-disruptive properties of phthalates, but the effect of certain phthalates seems to be stimulative on TH production, contrary to most other groups of chemicals. Thyroid disruption may be caused by a variety of mechanisms, as different chemicals interfere with the hypothalamic -pituitary -thyroid axis at different levels. Mechanisms of action may involve the sodium-iodide symporter, thyroid peroxidase enzyme, receptors for THs or TSH, transport proteins or cellular uptake mechanisms. The peripheral metabolism of the THs can be affected through effects on iodothyronine deiodinases or hepatic enzymes. Even small changes in thyroid homeostasis may adversely affect human health, and especially fetal neurological development may be vulnerable. It is therefore urgent to clarify whether the animal data showing effects of chemicals on thyroid function can be extended to humans.
European Journal of Endocrinology 154 599-611
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.