Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip â microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug speci®c-ally targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa bio®lms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.
Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp). Gfpbased reporter technology has been applied for non-destructive, single-celllevel detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum sensing in most biofilm cells. The compound did not affect initial attachment to the abiotic substratum. It does, however, affect the architecture of the biofilm and enhances the process of bacterial detachment, leading to a loss of bacterial biomass from the substratum.
The present study was undertaken to investigate the appearance and location of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung and in sputum. Samples include preserved tissues of CF patients who died due to chronic P. aeruginosa lung infection prior to the advent of intensive antibiotic therapy, explanted lungs from 3 intensively treated chronically P. aeruginosa infected CF patients and routine sputum from 77 chronically P. aeruginosa infected CF patients. All samples were investigated microscopically using hematoxylin-eosin (HE), Gram and alcian-blue stain, PNA FISH and immunofluorescence for alginate.Investigation of the preserved tissues revealed that prior to aggressive antibiotic therapy, P. aeruginosa infection and destruction of the CF lung correlated with the occurrence of mucoid (alginate) bacteria present in aggregating structures surrounded by pronounced polymorphonuclear-leukocyte (PMN) inflammation in the respiratory zone (9/9). Non-mucoid bacteria were not observed here, and rarely in the conductive zone (1/9). However, in the explanted lungs, the P. aeruginosa aggregates were also mucoid but in contrast to the autopsies, they were very rare in the respiratory zone but abundant in the sputum of the conductive zone (3/3), which also contained abundances of PMNs (3/3). Non-mucoid and planktonic P. aeruginosa were also observed here (3/3).In conclusion, the present intensive antibiotic therapy of chronic P. aeruginosa infections, at the Copenhagen CF Centre, seems to restrain but not eradicate the bacteria from the conductive zone, whereas the remaining healthy respiratory zone appears to be protected, for a long period, from massive biofilm infection. This strongly suggests that the conductive zone serves as a bacterial reservoir where the bacteria are organized in mucoid biofilms within the mucus, protected against antibiotics and host defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.