Steganography Steganography is the art and science of hiding communication; a steganographic system thus embeds hidden content in unremarkable cover media so as not to arouse an eavesdropper's suspicion. In the past, people used hidden tattoos or invisible ink to convey steganographic content. Today, computer and network technologies provide easy-to-use communication channels for steganography.Essentially, the information-hiding process in a steganographic system starts by identifying a cover medium's redundant bits (those that can be modified without destroying that medium's integrity). 1 The embedding process creates a stego medium by replacing these redundant bits with data from the hidden message.Modern steganography's goal is to keep its mere presence undetectable, but steganographic systemsbecause of their invasive nature-leave behind detectable traces in the cover medium. Even if secret content is not revealed, the existence of it is: modifying the cover medium changes its statistical properties, so eavesdroppers can detect the distortions in the resulting stego medium's statistical properties. The process of finding these distortions is called statistical steganalysis.This article discusses existing steganographic systems and presents recent research in detecting them via statistical steganalysis. Other surveys focus on the general usage of information hiding and watermarking or else provide an overview of detection algorithms. 2,3 Here, we present recent research and discuss the practical application of detection algorithms and the mecha n i s m s for getting around them. The basics of embeddingThree different aspects in information-hiding systems contend with each other: capacity, security, and robustness. 4 Capacity refers to the amount of information that can be hidden in the cover medium, security to an eavesdropper's inability to detect hidden information, and robustness to the amount of modification the stego medium can withstand before an adversary can destroy hidden information.Information hiding generally relates to both watermarking and steganography. A watermarking system's primary goal is to achieve a high level of robustness-that is, it should be impossible to remove a watermark without degrading the data object's quality. Steganography, on the other hand, strives for high security and capacity, which often entails that the hidden information is fragile. Even trivial modifications to the stego medium can destroy it.A classical steganographic system's security relies on the encoding system's secrecy. An example of this type of system is a Roman general who shaved a slave's head and tattooed a message on it. After the hair grew back, the slave was sent to deliver the now-hidden message. 5 Although such a system might work for a time, once it is known, it is simple enough to shave the heads of all the people passing by to check for hidden messages-ultimately, such a steganographic system fails.Modern steganography attempts to be detectable only if secret information is known-namely, a secret
Phishing is form of identity theft that combines social engineering techniques and sophisticated attack vectors to harvest financial information from unsuspecting consumers. Often a phisher tries to lure her victim into clicking a URL pointing to a rogue page. In this paper, we focus on studying the structure of URLs employed in various phishing attacks. We find that it is often possible to tell whether or not a URL belongs to a phishing attack without requiring any knowledge of the corresponding page data. We describe several features that can be used to distinguish a phishing URL from a benign one. These features are used to model a logistic regression filter that is efficient and has a high accuracy. We use this filter to perform thorough measurements on several million URLs and quantify the prevalence of phishing on the Internet today.
Today, web injection manifests in many forms, but fundamentally occurs when malicious and unwanted actors tamper directly with browser sessions for their own profit. In this work we illuminate the scope and negative impact of one of these forms, ad injection, in which users have ads imposed on them in addition to, or different from, those that websites originally sent them. We develop a multi-staged pipeline that identifies ad injection in the wild and captures its distribution and revenue chains. We find that ad injection has entrenched itself as a cross-browser monetization platform impacting more than 5% of unique daily IP addresses accessing Google-tens of millions of users around the globe. Injected ads arrive on a client's machine through multiple vectors: our measurements identify 50,870 Chrome extensions and 34,407 Windows binaries, 38% and 17% of which are explicitly malicious. A small number of software developers support the vast majority of these injectors who in turn syndicate from the larger ad ecosystem. We have contacted the Chrome Web Store and the advertisers targeted by ad injectors to alert each of the deceptive practices involved.
joined Google in 2003 and is currently a principal software engineer in the Infrastructure Security Group. His areas of interest include computer and network security, as well as large-scale distributed systems. He serves on the Usenix board of directors. MOHEEB ABU RAJAB
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.