Endophilin 1 is a presynaptically enriched protein which binds the GTPase dynamin and the polyphosphoinositide phosphatase synptojanin. Perturbation of endophilin function in cell-free systems and in a living synapse has implicated endophilin in endocytic vesicle budding (Ringstad, N., H. Gad, P. Low, G. Di Paolo, L. Brodin, O. Shupliakov, and P. De Camilli. 1999. Neuron. 24:143–154; Schmidt, A., M. Wolde, C. Thiele, W. Fest, H. Kratzin, A.V. Podtelejnikov, W. Witke, W.B. Huttner, and H.D. Soling. 1999. Nature. 401:133–141; Gad, H., N. Ringstad, P. Low, O. Kjaerulff, J. Gustafsson, M. Wenk, G. Di Paolo, Y. Nemoto, J. Crun, M.H. Ellisman, et al. 2000. Neuron. 27:301–312). Here, we show that purified endophilin can directly bind and evaginate lipid bilayers into narrow tubules similar in diameter to the neck of a clathrin-coated bud, providing new insight into the mechanisms through which endophilin may participate in membrane deformation and vesicle budding. This property of endophilin is independent of its putative lysophosphatydic acid acyl transferase activity, is mediated by its NH2-terminal region, and requires an amino acid stretch homologous to a corresponding region in amphiphysin, a protein previously shown to have similar effects on lipid bilayers (Takei, K., V.I. Slepnev, V. Haucke, and P. De Camilli. 1999. Nat. Cell Biol. 1:33–39). Endophilin cooligomerizes with dynamin rings on lipid tubules and inhibits dynamin's GTP-dependent vesiculating activity. Endophilin B, a protein with homology to endophilin 1, partially localizes to the Golgi complex and also deforms lipid bilayers into tubules, underscoring a potential role of endophilin family members in diverse tubulovesicular membrane-trafficking events in the cell.
Octopamine biosynthesis requires tyrosine decarboxylase to convert tyrosine into tyramine and tyramine beta-hydroxylase to convert tyramine into octopamine. We identified and characterized a Caenorhabditis elegans tyrosine decarboxylase gene, tdc-1, and a tyramine beta-hydroxylase gene, tbh-1. The TBH-1 protein is expressed in a subset of TDC-1-expressing cells, indicating that C. elegans has tyraminergic cells that are distinct from its octopaminergic cells. tdc-1 mutants have behavioral defects not shared by tbh-1 mutants. We show that tyramine plays a specific role in the inhibition of egg laying, the modulation of reversal behavior, and the suppression of head oscillations in response to anterior touch. We propose a model for the neural circuit that coordinates locomotion and head oscillations in response to anterior touch. Our findings establish tyramine as a neurotransmitter in C. elegans, and we suggest that tyramine is a genuine neurotransmitter in other invertebrates and possibly in vertebrates as well.
The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOHterminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4͞8͞13 proteins bind to both synaptojanin and dynamin I. The SH3p4͞8͞13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4͞8͞13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4͞8͞13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.