Growing evidence suggests that phosphoinositides play an important role in membrane traffic. A polyphosphoinositide phosphatase, synaptojanin 1, was identified as a major presynaptic protein associated with endocytic coated intermediates. We report here that synaptojanin 1-deficient mice exhibit neurological defects and die shortly after birth. In neurons of mutant animals, PI(4,5)P2 levels are increased, and clathrin-coated vesicles accumulate in the cytomatrix-rich area that surrounds the synaptic vesicle cluster in nerve endings. In cell-free assays, reduced phosphoinositide phosphatase activity correlated with increased association of clathrin coats with liposomes. Intracellular recording in hippocampal slices revealed enhanced synaptic depression during prolonged high-frequency stimulation followed by delayed recovery. These results provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling.
Synaptojanin is a nerve terminal protein of relative molecular mass 145,000 which appears to participate with dynamin in synaptic vesicle recycling. The central region of synaptojanin defines it as a member of the inositol-5-phosphatase family, which includes the product of the gene that is defective in the oculocerebrorenal syndrome of Lowe. Synaptojanin has 5-phosphatase activity and its amino-terminal domain is homologous with the yeast protein Sac1 (Rsd1), which is genetically implicated in phospholipid metabolism and in the function of the actin cytoskeleton. The carboxy terminus, which is of different lengths in adult and developing neurons owing to the alternative use of two termination sites, is proline-rich, consistent with the reported interaction of synaptojanin with the SH3 domains of Grb2 (refs 1, 2). Synaptojanin is the only other major brain protein besides dynamin that binds the SH3 domain of amphiphysin, a presynaptic protein with a putative function in endocytosis. Our results suggest a link between phosphoinositide metabolism and synaptic vesicle recycling.
The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOHterminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4͞8͞13 proteins bind to both synaptojanin and dynamin I. The SH3p4͞8͞13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4͞8͞13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4͞8͞13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.