We have used Low Energy Electron Microscopy (LEEM) and Photo Emission
Electron Microscopy (PEEM) to study and improve the quality of graphene films
grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated
temperature already yields graphene sheets that are uniform and of monatomic
thickness. Besides domains that are aligned with respect to the substrate,
other rotational variants grow. Cyclic growth exploiting the faster growth and
etch rates of the rotational variants, yields films that are 99 % composed of
aligned domains. Precovering the substrate with a high density of graphene
nuclei prior to CVD yields pure films of aligned domains extending over
millimeters. Such films can be used to prepare cluster-graphene hybrid
materials for catalysis or nanomagnetism and can potentially be combined with
lift-off techniques to yield high-quality, graphene based electronic devices
Catalytic decomposition of hydrocarbons on transition metals attracts a renewed interest as a route toward high-quality graphene prepared in a reproducible manner. Here we employ two growth methods for graphene on Ir(111), namely room temperature adsorption and thermal decomposition at 870–1470 K (temperature programmed growth (TPG)) as well as direct exposure of the hot substrate at 870–1320 K (chemical vapor deposition (CVD)). The temperature- and exposure-dependent growth of graphene is investigated in detail by scanning tunneling microscopy. TPG is found to yield compact graphene islands bounded by C zigzag edges. The island size may be tuned from a few to a couple of tens of nanometers through Smoluchowski ripening. In the CVD growth, the carbon in ethene molecules arriving on the Ir surface is found to convert with probability near unity to graphene. The temperature-dependent nucleation, interaction with steps and coalescence of graphene islands are analyzed and a consistent model for CVD growth is developed.
Linear and nonlinear photoemission microscopy is used to study the origin of space charge effects that are frequently observed if amplified femtosecond lasers are used for generation of photoelectrons. Space charge effects are apparent in the width of the photoemission spectra, but also create image blur. The onset threshold for space charge effects is determined by recording the width of photoemission spectra and by finding the conditions under which spectral broadening is just less than the energy resolution of the microscope. The principal findings are independent if harmonics of the fundamental of the fs laser pulses are used, but the space charge effects are found to be more dominant at lower repetition rates. By inserting apertures into the electron path, the place at which space charge effects occur can be localized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.