The spatial quantification of green leaf area index (LAIgreen), the total green photosynthetically active leaf area per ground area, is a crucial biophysical variable for agroecosystem monitoring. The Sentinel-2 mission is with (1) a temporal resolution lower than a week, (2) a spatial resolution of up to 10 m, and (3) narrow bands in the red and red-edge region, a highly promising mission for agricultural monitoring. The aim of this work is to define an easy implementable LAIgreen index for the Sentinel-2 mission. Two large and independent multi-crop datasets of in situ collected LAIgreen measurements were used. Commonly used LAIgreen indices applied on the Sentinel-2 10 m × 10 m pixel resulted in a validation R2 lower than 0.6. By calculating all Sentinel-2 band combinations to identify high correlation and physical basis with LAIgreen, the new Sentinel-2 LAIgreen Index (SeLI) was defined. SeLI is a normalized index that uses the 705 nm and 865 nm centered bands, exploiting the red-edge region for low-saturating absorption sensitivity to photosynthetic vegetation. A R2 of 0.708 (root mean squared error (RMSE) = 0.67) and a R2 of 0.732 (RMSE = 0.69) were obtained with a linear fitting for the calibration and validation datasets, respectively, outperforming established indices. Sentinel-2 LAIgreen maps are presented.
Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this study performed a comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) and CCC (R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE ≈ 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived from FAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas.
The objective of this work is to evaluate the capacity of the C-band Synthetic Aperture Radar (SAR) time series imagery, acquired by the European satellite Sentinel-1 (S1), for the agriculture crop classification and its reliability to differentiate onion from sunflower, among others. The work then focused on classifying land cover in intensively cultivated agricultural regions. The study was developed in the Bonaerense Valley of the Colorado River (BVCR), Buenos Aires Province in Argentina, backed up by the field truth of 1634 field samples. In addition to the onion and sunflower crops, there are other crops present in the study area such as cereals, alfalfa, potatoes and maize, which are considered as the image background in the classification process. The field samples database was used for training and supporting a supervised classification with two machine learning algorithms—Random Forest (RF) and Support Vector Machine (SVM)—obtaining high levels of accuracy in each case. Different S1 SAR time-series features were used to assess the performance of S1 crop classification in terms of polarization VH+VV, Grey Level Co-occurrence Matrix (GLCM) image texture and a combination of both. The analysis of SAR data and their features was carried out at OBIA lot level (Object Based Image Analysis) showing an optimal strategy to counteract the effect of the residual and inherent speckle noise of the radar signal. In the process of differentiating onion and sunflower crops, the analysis of the VH+VV stack with the SVM algorithm delivered the best statistical classification results in terms of Overall Accuracy (OA) and Kappa Index, (Kp) when other crops (image background) were not considered (OA = 95.35%, Kp = 0.89). Certainly, the GLCM texture analysis derived from the S1 SAR images is a valuable source of information for obtaining very good classification results. When differentiating sunflower from onion considering also other crops present in the BVCR, the GLCM stack proved to be the most suitable dataset analyzed in this work (OA = 89.98%, Kp = 0.66 for SVM algorithm). This working methodology is applicable to other irrigated valleys in Argentina dedicated to intensive crops. There are also variables inherent to each lot, soil, crop and agricultural producer that differ according to the study area and that should be considered for each case in the future.
Background Soil organic carbon (SOC) affects essential biological, biochemical, and physical soil functions such as nutrient cycling, water retention, water distribution, and soil structure stability. The Andean páramo known as such a high carbon and water storage capacity ecosystem is a complex, heterogeneous and remote ecosystem complicating field studies to collect SOC data. Here, we propose a multi-predictor remote quantification of SOC using Random Forest Regression to map SOC stock in the herbaceous páramo of the Chimborazo province, Ecuador. Results Spectral indices derived from the Landsat-8 (L8) sensors, OLI and TIRS, topographic, geological, soil taxonomy and climate variables were used in combination with 500 in situ SOC sampling data for training and calibrating a suitable predictive SOC model. The final predictive model selected uses nine predictors with a RMSE of 1.72% and a R2 of 0.82 for SOC expressed in weight %, a RMSE of 25.8 Mg/ha and a R2 of 0.77 for the model in units of Mg/ha. Satellite-derived indices such as VARIG, SLP, NDVI, NDWI, SAVI, EVI2, WDRVI, NDSI, NDMI, NBR and NBR2 were not found to be strong SOC predictors. Relevant predictors instead were in order of importance: geological unit, soil taxonomy, precipitation, elevation, orientation, slope length and steepness (LS Factor), Bare Soil Index (BI), average annual temperature and TOA Brightness Temperature. Conclusions Variables such as the BI index derived from satellite images and the LS factor from the DEM increase the SOC mapping accuracy. The mapping results show that over 57% of the study area contains high concentrations of SOC, between 150 and 205 Mg/ha, positioning the herbaceous páramo as an ecosystem of global importance. The results obtained with this study can be used to extent the SOC mapping in the whole herbaceous ecosystem of Ecuador offering an efficient and accurate methodology without the need for intensive in situ sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.