Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection.
Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric 'bacteria sequestrants', designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.
The long-term use of antibiotics has led to the emergence of multidrug-resistant bacteria. A promising strategy to combat bacterial infections aims at hampering their adaptability to the host environment without affecting growth. In this context, the intercellular communication system quorum sensing (QS), which controls virulence factor production and biofilm formation in diverse human pathogens, is considered an ideal target. Here, we describe the identification of new inhibitors of the QS system of the human pathogen by screening a library of 1,600 U.S. Food and Drug Administration-approved drugs. Phenotypic characterization of engineered strains and molecular docking demonstrated that the antifungal drugs clotrimazole and miconazole, as well as an antibacterial compound active against Gram-positive pathogens, clofoctol, inhibit the system, probably by targeting the transcriptional regulator PqsR. The most active inhibitor, clofoctol, specifically inhibited the expression of-controlled virulence traits in , such as pyocyanin production, swarming motility, biofilm formation, and expression of genes involved in siderophore production. Moreover, clofoctol protected larvae from infection and inhibited the QS system in isolates from cystic fibrosis patients. Notably, clofoctol is already approved for clinical treatment of pulmonary infections caused by Gram-positive bacterial pathogens; hence, this drug has considerable clinical potential as an antivirulence agent for the treatment of lung infections.
BackgroundPulmonary P. aeruginosa infection is associated with poor outcomes in cystic fibrosis (CF) and early diagnosis is challenging, particularly in those who are unable to expectorate sputum. Specific P. aeruginosa 2-alkyl-4-quinolones are detectable in the sputum, plasma and urine of adults with CF, suggesting that they have potential as biomarkers for P. aeruginosa infection.AimTo investigate systemic 2-alkyl-4-quinolones as potential biomarkers for pulmonary P. aeruginosa infection.MethodsA multicentre observational study of 176 adults and 68 children with CF. Cross-sectionally, comparisons were made between current P. aeruginosa infection using six 2-alkyl-4-quinolones detected in sputum, plasma and urine against hospital microbiological culture results. All participants without P. aeruginosa infection at baseline were followed up for one year to determine if 2-alkyl-4-quinolones were early biomarkers of pulmonary P. aeruginosa infection.ResultsCross-sectional analysis: the most promising biomarker with the greatest diagnostic accuracy was 2-heptyl-4-hydroxyquinoline (HHQ). In adults, areas under the ROC curves (95% confidence intervals) for HHQ analyses were 0.82 (0.75–0.89) in sputum, 0.76 (0.69–0.82) in plasma and 0.82 (0.77–0.88) in urine. In children, the corresponding values for HHQ analyses were 0.88 (0.77–0.99) in plasma and 0.83 (0.68–0.97) in urine.Longitudinal analysis: Ten adults and six children had a new positive respiratory culture for P. aeruginosa in follow-up. A positive plasma HHQ test at baseline was significantly associated with a new positive culture for P. aeruginosa in both adults and children in follow-up (odds ratio (OR) = 6.67;-95% CI:-1.48–30.1;-p = 0.01 and OR = 70; 95% CI: 5–956;-p < 0.001 respectively).ConclusionsAQs measured in sputum, plasma and urine may be used to diagnose current infection with P. aeruginosa in adults and children with CF. These preliminary data show that plasma HHQ may have potential as an early biomarker of pulmonary P. aeruginosa. Further studies are necessary to evaluate if HHQ could be used in clinical practice to aid early diagnosis of P. aeruginosa infection in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.