This research focuses on film cooling of the trailing edge of a scaled up turbine rotor blade with engine-representative Mach number distribution. Pressure sensitive paint was used to obtain high-resolution adiabatic film cooling effectiveness measurements in the trailing edge region of the scaled turbine blade. The large scale, high-speed experimental set-up consists of a Perspex test section for maximum visibility of the PSP coated blade. The test section was designed to recreate a single blade passage of a gas turbine with inlet Mach and Reynolds numbers matching the corresponding values in an engine. The test blade has a constant cross section, representative of the mid-span profile of the high pressure turbine rotor blade. It was manufactured from aluminium to minimize temperature gradients over the surface of the test blade. In the current research, pressure surface cooling slots at the trailing edge were examined and the effect of cutback surface protuberance, or ‘land’, shapes on trailing edge film cooling was studied. Nitrogen and air were used as coolant gases giving a coolant to mainstream density ratio close to 1. Two land geometries-straight and tapered-were studied for a set of 6 blowing ratios from 0.4 to 1.4 in steps of 0.2. Land taper has a benefit for film cooling near the slot exit but its advantage reduces close to the trailing edge. For both geometries, film effectiveness falls with blowing ratio from 0.4 to 0.8 and increases with blowing ratio in the 0.8 to 1.4 range. Crossflow causes the coolant film to be biased towards one side of the lands. Film effectiveness results are compared with data from a scaled up low speed flat plat model of the trailing edge to explain the effect of acceleration on film cooling.
Slot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions like step flow separation, coolant-mainstream mixing and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of CFD methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. Compared to steady k–ω SST method, Scale Adaptive Simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant-hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is non-symmetric with respect to the half-span plane and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.
Slot film cooling is a popular choice for trailing edge (TE) cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cutback in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions such as step flow separation, coolant-mainstream mixing, and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high-speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of computational fluid dynamics (CFD) methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. When compared with the steady k − ω shear stress transport (SST) method, scale adaptive simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production, and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant–hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is nonsymmetric with respect to the half-span plane, and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy, and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.