Adults born after 1970s are more prone to cardiovascular diseases. Death rate percentage is quite high due to heart related diseases. Therefore, there is necessity to enquire the problem or detection of heart diseases earlier for their proper treatment. As, Valvular heart disease, that is, stenosis and regurgitation of heart valve, are also a major cause of heart failure; which can be diagnosed at early-stage by detection and analysis of heart sound signal, that is, HS signal. In this proposed work, an attempt has been made to detect and localize the major heart sounds, that is, S1 and S2. The work in this article consists of three parts. Firstly, self-acquisition of Phonocardiogram (PCG) and Electrocardiogram (ECG) signal through a self-assembled, data-acquisition set-up. The Phonocardiogram (PCG) signal is acquired from all the four auscultation areas, that is, Aortic, Pulmonic, Tricuspid and Mitral on human chest, using electronic stethoscope. Secondly, the major heart sounds, that is, S1 and S2are detected using 3rd Order Normalized Average Shannon energy Envelope (3rd Order NASE) Algorithm. Further, an auto-thresholding has been used to localize time gates of S1 and S2 and that of R-peaks of simultaneously recorded ECG signal. In third part; the successful detection rate of S1 and S2, from self-acquired PCG signals is computed and compared. A total of 280 samples from same subjects as well as from different subjects (of age group 15–30 years) have been taken in which 70 samples are taken from each auscultation area of human chest. Moreover, simultaneous recording of ECG has also been performed. It was analyzed and observed that detection and localization of S1 and S2 found 74% successful for the self-acquired heart sound signal, if the heart sound data is recorded from pulmonic position of Human chest. The success rate could be much higher, if standard data base of heart sound signal would be used for the same analysis method. The, remaining three auscultations areas, that is, Aortic, Tricuspid, and Mitral have smaller success rate of detection of S1 and S2 from self-acquired PCG signals. So, this work justifies that the Pulmonic position of heart is most suitable auscultation area for acquiring PCG signal for detection and localization of S1 and S2 much accurately and for analysis purpose.
This paper proposes a single framework for segmentation of abnormalities for breast cancer detection from Ultrasound images in presence of Rayleigh noise i.e. noise removal and segmentation are embedded in single step. It accomplishes dual purpose in a single framework simultaneously for the preprocessing and segmentation. The proposed framework comprises of two terms, first term, is used for segmentation which is a modified fuzzy c-means segmentation (MFCM) approach while second term is an adaptive complex diffusion based non linear filter (ACDPDE) that performs as regularization function for removal of Rayleigh noise, enhancement, and edge preservation of ultrasound Image. The various existing segmentation methods viz. K-Means, Texture based, Fuzzy C-Means (FCM), total variation based FCM (TVFCM), Adaptive fourth order PDE based FCM (AFPDEFCM), and the proposed method are evaluated for 50 sample ultrasound images of breast cancer. The region of interest (ROI) segmented image of ultrasound breast tissue is compared with ground truth images. From the acquired results and its analysis, it is observed that the proposed method is more robust and provides better segmentation result for ultrasound images in terms of various performance measures such as Global Constancy error (GCE), Tanimoto coefficient, Variation of Information (VOI), Probability Random Index (PRI), Jaccard coefficient, accuracy, True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), dice index, False Negative Rate (FNR), and Area under curve (AUC). The proposed approach is capable of handling segmentation problem of blocky artifacts while achieving good tradeoff between Rayleigh noise removal and edge preservation. The proposed method may be useful for finding additional 33% cases of breast cancer which is missed or not detected by mammography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.