Apricot fruits provide important health, economic, and nutritional benefits. Weeds damage apricot production directly and host the pests that cause damages to apricot trees. However, very few studies are available on weed control in apricot orchards. This research work was aimed at evaluating five cover crops for weed suppression in apricot orchard. The effect of living, mowed, and soil-incorporated cover corps on weeds was recorded and compared with glyphosate application and mechanical weed control. The cover crops were Vicia villosa Roth., Vicia pannonica Crantz, Triticale + V. pannonica, Phacelia tanacetifolia Benth., and Fagopyrum esculentum Moench. Five major weed species in the experimental area were Amaranthus retroflexus L., Convolvulus arvensis L., Tribulus terrestris L., Sisymbrium officinale (L.) Scop., and Sorghum halepense (L.) Per. The highest biomass production was noted for Triticale + V. pannonica in 2015 and for P. tanacetifolia in 2016. Living cover crops were effective in decreasing the weed biomass compared with the control. Both mowing and soil incorporation of cover crops were effective in decreasing weed richness and density over control. Mowed or soil-incorporated cover crops were more effective than herbicide or mechanical weed control, while F. esculentum was the least effective cover crop for suppressing weeds in apricot orchard. The results of our studies implied that cover crops could be used for weed control in apricot, and their mowing or soil incorporation could enhance their efficacy.
Field studies were conducted in Mersin, Turkey, in 2002 and 2003 to determine the critical period for weed control in leek and to investigate the effects of weed interference on weed biomass. The critical period for weed control in leek based on a 5% acceptable yield loss level was calculated by fitting logistic and Gompertz equations to relative yield data. Total fresh biomass of weeds increased as the duration of weed infestation increased. The beginning of the critical period for weed control was 7 days after transplanting in 2002 and 13 days after transplanting in 2003. The end of the critical period for weed control was 85 days after transplanting in 2002 and 60 days after transplanting in 2003. Results of this study suggest that leek should be kept weed free between 7 days after transplanting and 85 days after transplanting to avoid yield losses in excess of 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.