Glyphosate-based herbicides are among the most widely used pesticides in the world. We compared the acute toxicity of the glyphosate end-use formulation Roundup Original to four North American amphibian species (Rana clamitans, R. pipiens, R. sylvatica, and Bufo americanus) and the toxicity of glyphosate technical, the polyethoxylated tallowamine surfactant (POEA) commonly used in glyphosate-based herbicides, and five newer glyphosate formulations to R. clamitans. For R. clamitans, acute toxicity values in order of decreasing toxicity were POEA > Roundup Original > Roundup Transorb > Glyfos AU; no significant acute toxicity was observed with glyphosate technical material or the glyphosate formulations Roundup Biactive, Touchdown, or Glyfos BIO. Comparisons between the four amphibian species showed that the toxicity of Roundup Original varied with species and developmental stage. Rana pipiens tadpoles chronically exposed to environmentally relevant concentrations of POEA or glyphosate formulations containing POEA showed decreased snout-vent length at metamorphosis and increased time to metamorphosis, tail damage, and gonadal abnormalities. These effects may be caused, in some part, by disruption of hormone signaling, because thyroid hormone receptor beta mRNA transcript levels were elevated by exposure to formulations containing glyphosate and POEA. Taken together, the data suggest that surfactant composition must be considered in the evaluation of toxicity of glyphosate-based herbicides.
BackgroundWithin chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues.ResultsWe report that H2A.Z-1 and H2A.Z-2 are expressed across a wide range of human tissues, they are both acetylated at lysine residues within the N-terminal region and they exhibit similar, but nonidentical, distributions within chromatin. Our results suggest that H2A.Z-2 preferentially associates with H3 trimethylated at lysine 4 compared to H2A.Z-1. The phylogenetic analysis of the promoter regions of H2A.Z-1 and H2A.Z-2 indicate that they have evolved separately during vertebrate evolution.ConclusionsOur biochemical, gene expression, and phylogenetic data suggest that the H2A.Z-1 and H2A.Z-2 variants function similarly yet they may have acquired a degree of functional independence.
Persistent organic pollutants are environmental contaminants that, because of their lipophilic properties and long half-lives, bioaccumulate within aquatic food webs and often reach high concentrations in marine mammals, such as harbor seals (Phoca vitulina). Exposure to these contaminants has been associated with developmental abnormalities, immunotoxicity, and reproductive impairment in marine mammals and other high-trophic-level wildlife, mediated via a disruption of endocrine processes. The highly conserved thyroid hormones (THs) represent one vulnerable endocrine end point that is critical for metabolism, growth, and development in vertebrates. We characterized the relationship between contaminants and specific TH receptor (TR ) gene expression in skin/blubber biopsy samples, as well as serum THs, from free-ranging harbor seal pups (n = 39) in British Columbia, Canada, and Washington State, USA. We observed a contaminant-related increase in blubber TR-α gene expression [total polychlorinated biphenyls (∑PCBs); r = 0.679; p < 0.001] and a concomitant decrease in circulating total thyroxine concentrations (∑PCBs; r = −0.711; p < 0.001). Consistent with results observed in carefully controlled laboratory and captive feeding studies, our findings suggest that the TH system in harbor seals is highly sensitive to disruption by environmental contaminants. Such a disruption not only may lead to adverse effects on growth and development but also could have important ramifications for lipid metabolism and energetics in marine mammals.
Killer whales in the NE Pacific Ocean are among the world's most PCB-contaminated marine mammals, raising concerns about implications for their health. Sixteen health-related killer whale mRNA transcripts were analyzed in blubber biopsies collected from 35 free-ranging killer whales in British Columbia using real-time quantitative polymerase chain reaction. We observed PCB-related increases in the expression of five gene targets, including the aryl hydrocarbon receptor (AhR; r(2) = 0.83; p < 0.001), thyroid hormone α receptor (TRα; r(2) = 0.64; p < 0.001), estrogen α receptor (ERα; r(2) = 0.70; p < 0.001), interleukin 10 (IL-10; r(2) = 0.74 and 0.68, males and females, respectively; p < 0.001), and metallothionein 1 (MT1; r(2) = 0.58; p < 0.001). Best-fit models indicated that population (dietary preference), age, and sex were not confounding factors, except for IL-10, where males differed from females. While the population-level consequences are unclear, the PCB-associated alterations in mRNA abundance of such pivotal end points provide compelling evidence of adverse physiological effects of persistent environmental contaminants in these endangered killer whales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.