Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti‐eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine‐like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX‐effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti‐eukaryotic effectors. One of these is a MIX‐effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX‐effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors.
Viral-host interactions represent potential drug targets for novel antiviral strategies (Flisiak et al., Hepatology, 2008, 47, 817-26). Hence, it is important to establish an adequate platform for identifying and analyzing such interactions. In this review, we discuss bottlenecks in conventional protein-protein interaction methodologies and present the contribution of innovative microfluidic-based technologies towards a solution to these problems with respect to viral-host proteomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.