Heat shock proteins (HSPs) have a significant role in protein folding and are considered as prominent candidates for development of heat-tolerant crops. Understanding of wheat HSPs has great importance since wheat is severely affected by heat stress, particularly during the grain filling stage. In the present study, efforts were made to identify HSPs in wheat and to understand their role during plant development and under different stress conditions. HSPs in wheat genome were first identified by using Position-Specific Scoring Matrix (PSSMs) of known HSP domains and then also confirmed by sequence homology with already known HSPs. Collectively, 753 TaHSPs including 169 TaSHSP, 273 TaHSP40, 95 TaHSP60, 114 TaHSP70, 18 TaHSP90 and 84 TaHSP100 were identified in the wheat genome. Compared with other grass species, number of HSPs in wheat was relatively high probably due to the higher ploidy level. Large number of tandem duplication was identified in TaHSPs, especially TaSHSPs. The TaHSP genes showed random distribution on chromosomes, however, there were more TaHSPs in B and D sub-genomes as compared to the A sub-genome. Extensive computational analysis was performed using the available genomic resources to understand gene structure, gene expression and phylogentic relationship of TaHSPs. Interestingly, apart from high expression under heat stress, high expression of TaSHSP was also observed during seed development. The study provided a list of candidate HSP genes for improving thermo tolerance during developmental stages and also for understanding the seed development process in bread wheat. The sessile nature of plants makes them vulnerable to various kinds of biotic and abiotic stresses. Plants have sophisticated mechanisms to recognize and respond to these stresses. High-temperature stress is common abiotic stress, which significantly reduces the crop yield worldwide. Simulation modeling has predicted that every 1 °C rise in temperature above 30 °C reduces the grain filling duration by 0.30-0.60% and grain yield by 1.0-1.6% 1. In response to high-temperature stress, plants synthesize many stress-responsive proteins including a family of proteins called heat shock proteins (HSPs). Enhanced production of HSPs has also been reported under other stress conditions like salinity, heavy metal, and drought 2,3. Some HSPs are also involved in the development of viral infections too, in both plants and animals 4,5. HSPs function as chaperones and assist in the refolding of denatured proteins, folding of nascent polypeptides and resolubilization of denatured protein aggregates 6,7. With increasing concerns about global warming and climate change, many laboratories across the world have used HSPs to create thermo-tolerant plants 8,9. There are reports describing the direct or indirect involvement of HSPs in different developmental stages of the plant 10. Various HSPs show tissue-specific and developmental stage specific
The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.
The wild species of chickpea have tremendous potential for enhancing genetic gains of cultigen and have resistant accessions against major biotic and abiotic stresses. In the present study, two wild annual accessions, one each of C. reticulatum Ladiz. (ILWC 229) and C. echinospermum Davis (ILWC 246) were assessed for their agro-morphological features and hybridized with different cultivated varieties (BGD 72, PBG 5, ICKG 96029, Pusa 372 and JG 11) of chickpea. Fertile F1 plants were developed as revealed by their normal meiotic chromosomal configuration including high pollen stainability percentage and seed set. The effect of genetic and non-genetic factors on crossability performance with respect to pod and seed set was also evident under two growing conditions of North-Western Indian Himalayas. The segregation analysis using F2 phenotypic ratio of some distinct morphological (plant growth habit, stem pigmentation at seedling stage and testa texture) characters indicated their monogenic inheritance pattern. The study would also be useful to chickpea breeders to identify true to type interspecific plants. Further, the F1, F2 and F3 generations of all seven crosses along with parents were evaluated under natural field condition to determine the extent of variability created into the cultivated background of chickpea. There was a wide range of variation in F3 population against cold stress, suggesting selection of tolerant recombinant lines at an early stage. We also studied fruitful heterosis (%) as a useful approach, instead of residual heterosis to identify better performing transgressive segregants. The values of most of the interspecific crosses for important traits assessed in F2 and F3 generations were higher than that of better parent, suggesting isolation of inbred vigour for pod numbers and earliness. The results indicated that wild Cicer annual accessions of C. reticulatum and C. echinospermum species can be exploited after proper screening for traits of interest for diversification of cultivated gene pool and subsequent use in chickpea improvement.
Wild Lens taxa are a reservoir of useful rare genes/alleles for widening the genetic base and synthesis of a new gene pool of lentil. To maximize and sustain lentil production, new gene sources are needed to be identified and incorporated into cultivated background. This needs a comprehensive approach to accumulate favourable alleles from distantly related germplasm for widening of the cultivated gene pool and would be the most appropriate strategy to solve the various problems associated with stressed crop production and plateaued yields. Furthermore, expansion of deeper understanding of lentil genomics along with extensive research undertaken in other crop species can provide suitable guidelines to cover the distribution of Lens genus and component gene pools for further remarkable progress in lentil genetic improvement. This review aims at the genus Lens distribution and gene pools, crop germplasm conserved in ex‐situ and in‐situ collection, wild species characterization and evaluation for useful traits of interest to solve production‐related problems, highlight useful gene sources present in different gene pools and the progress achieved for widening the genetic base of cultivated varieties of lentil through wide hybridization and exploring lentil genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.