In this paper, we demonstrate the use of dualshaped silver nanoparticles (AgNPs) as detection labels for electrochemical bioassays. The key finding is that by simultaneously using AgNP labels having two different shapes, the limit of detection (LOD) for the assays is lowered compared to using either of the two shapes separately. The two shapes were silver nanocubes (AgNCs) having edge lengths of 40 ± 4 nm and spherical AgNPs (sAgNPs) having diameters of 20 ± 3 nm. Two different bioassays were examined. In both cases, the Ag labels were functionalized with antibodies. In the first assay, the labels are directly linked to a second antibody immobilized on magnetic beads. In the second assay, the antibodies on the AgNP labels and the antibodies on the magnetic beads are linked via a peptide. The peptide is N-terminal prohormone brain natriuretic peptide (NT-proBNP), which is a heart-failure marker. The efficacy of the two electrochemical assays as a function of the ratio of the two labels was investigated using a galvanic exchange/anodic stripping voltammetry method. The key finding is that by optimizing the ratio of the two types of AgNP labels, it is possible to decrease the LOD of the assays without compromising the dynamic range compared to using either of the two labels independently. This made it possible to achieve the clinically relevant range for NT-proBNP analysis used by physicians for heart failure risk stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.