This work identifies and addresses two important technical challenges in single-image super-resolution: (1) how to upsample an image without magnifying noise and (2) how to preserve large scale structure when upsampling. We summarize the techniques we developed for our second place entry in Track 1 (Bicubic Downsampling), seventh place entry in Track 2 (Realistic Adverse Conditions), and seventh place entry in Track 3 (Realistic difficult) in the 2018 NTIRE Super-Resolution Challenge. Furthermore, we present new neural network architectures that specifically address the two challenges listed above: denoising and preservation of large-scale structure.
The adoption of blockchain for Transactive Energy has gained significant momentum as it allows mutually non-trusting agents to trade energy services in a trustless energy market. Research to date has assumed that the built-in Byzantine Fault Tolerance in recording transactions in a ledger is sufficient to ensure integrity. Such work must be extended to address security gaps including random bilateral transactions that do not guarantee reliable and efficient market operation, and market participants having incentives to cheat when reporting actual production/consumption figures. Work herein introduces the Electron Volt Exchange framework with the following characteristics: 1) a distributed protocol for pricing and scheduling prosumers' production/consumption while keeping constraints and bids private, and 2) a distributed algorithm to prevent theft that verifies prosumers' compliance to scheduled transactions using information from grid sensors (such as smart meters) and mitigates the impact of false data injection attacks. Flexibility and robustness of the approach are demonstrated through simulation and implementation using Hyperledger Fabric.
Decentralized optimization has found a significant utility in recent years, as a promising technique to overcome the curse of dimensionality when dealing with large-scale inference and decision problems in big data. While these algorithms are resilient to node and link failures, they however, are not inherently Byzantine fault-tolerant towards insider data injection attacks. This paper proposes a decentralized robust subgradient push (RSGP) algorithm for detection and isolation of malicious nodes in the network for optimization non-strongly convex objectives. In the attack considered in this work, the malicious nodes follow the algorithmic protocols, but can alter their local functions arbitrarily. However, we show that in sufficiently structured problems, the method proposed is effective in revealing their presence. The algorithm isolates detected nodes from the regular nodes, thereby mitigating the ill-effects of malicious nodes. We also provide performance measures for the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.