As the number of vehicles increases, road accidents are on the rise every day. According to the World Health Organization (WHO) survey, 1.4 million people have died, and 50 million people have been injured worldwide every year. The key cause of death is the unavailability of medical care at the accident site or the high response time in the rescue operation. A cognitive agent-based collision detection smart accident alert and rescue system will help us to minimize delays in a rescue operation that could save many lives. With the growing popularity of smart cities, intelligent transportation systems (ITS) are drawing major interest in academia and business, and are considered as a means to improve road safety in smart cities. This article proposed an intelligent accident detection and rescue system which mimics the cognitive functions of the human mind using the Internet of Things (IoTs) and the Artificial Intelligence system (AI). An IoT kit is developed that detects the accident and collects all accident-related information, such as position, pressure, gravitational force, speed, etc., and sends it to the cloud. In the cloud, once the accident is detected, a deep learning (DL) model is used to validate the output of the IoT module and activate the rescue module. Once the accident is detected by the DL module, all the closest emergency services such as the hospital, police station, mechanics, etc., are notified. Ensemble transfer learning with dynamic weights is used to minimize the false detection rate. Due to the dataset’s unavailability, a personalized dataset is generated from the various videos available on the Internet. The proposed method is validated by a comparative analysis of ResNet and InceptionResnetV2. The experiment results show that InceptionResnetV2 provides a better performance compared to ResNet with training, validation, and a test accuracy of 98%, respectively. To measure the performance of the proposed approach in the real world, it is validated on the toy car.
The novel Covid-19 is one of the leading cause of death worldwide in the year 2020 and declared as a pandemic by world health organization (WHO). This virus affecting all countries across the world and 5 lakh people die as of June 2020 due to Covid-19. Due to the highly contagious nature, early detection of this virus plays a vital role to break Covid chain. Recent studies done by China says that chest CT and X-Ray image may be used as a preliminary test for Covid detection. Deep learning-based CNN model can use to detect Coronavirus automatically from the chest X-rays images. This paper proposed a transfer learning-based approach to detect Covid disease. Due to the less number of Covid chest images, we are using a pre-trained model to classify X-ray images into Covid and Normal class. This paper presents the comparative study of a various pre-trained model like VGGNet-19, ResNet50 and Inception_ResNet_V2. Experiment results show that Inception_ResNet_V2 gives the better result as compare to VGGNet and ResNet model with training and test accuracy of 99.26 and 94, respectively.
The year 2020 and 2021 was the witness of Covid 19 and it was the leading cause of death throughout the world during this time period. It has an impact on a large geographic area, particularly in countries with a large population. Due to the fact that this novel coronavirus has been detected in all countries around the world, the World Health Organization (WHO) has declared Covid-19 to be a pandemic. This novel coronavirus spread quickly from person to person through the saliva droplets and direct or indirect contact with an infected person. The tests carried out to detect the Covid-19 are time-consuming and the primary cause of rapid growth in Covid19 cases. Early detection of Covid patient can play a significant role in controlling the Covid chain by isolation the patient and proper treatment at the right time. Recent research on Covid-19 claim that Chest CT and X-ray images can be used as the preliminary screening for Covid-19 detection. This paper suggested an Artificial Intelligence (AI) based approach for detecting Covid-19 by using X-ray and CT scan images. Due to the availability of the small Covid dataset, we are using a pre-trained model. In this paper, four pre-trained models named VGGNet-19, ResNet50, InceptionResNetV2 and MobileNet are trained to classify the X-ray images into the Covid and Normal classes. A model is tuned in such a way that a smaller percentage of Covid cases will be classified as Normal cases by employing normalization and regularization techniques. The updated binary cross entropy loss (BCEL) function imposes a large penalty for classifying any Covid class to Normal class. The experimental results reveal that the proposed InceptionResNetV2 model outperforms the other pre-trained model with training, validation and test accuracy of 99.2%, 98% and 97% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.