The year 2020 and 2021 was the witness of Covid 19 and it was the leading cause of death throughout the world during this time period. It has an impact on a large geographic area, particularly in countries with a large population. Due to the fact that this novel coronavirus has been detected in all countries around the world, the World Health Organization (WHO) has declared Covid-19 to be a pandemic. This novel coronavirus spread quickly from person to person through the saliva droplets and direct or indirect contact with an infected person. The tests carried out to detect the Covid-19 are time-consuming and the primary cause of rapid growth in Covid19 cases. Early detection of Covid patient can play a significant role in controlling the Covid chain by isolation the patient and proper treatment at the right time. Recent research on Covid-19 claim that Chest CT and X-ray images can be used as the preliminary screening for Covid-19 detection. This paper suggested an Artificial Intelligence (AI) based approach for detecting Covid-19 by using X-ray and CT scan images. Due to the availability of the small Covid dataset, we are using a pre-trained model. In this paper, four pre-trained models named VGGNet-19, ResNet50, InceptionResNetV2 and MobileNet are trained to classify the X-ray images into the Covid and Normal classes. A model is tuned in such a way that a smaller percentage of Covid cases will be classified as Normal cases by employing normalization and regularization techniques. The updated binary cross entropy loss (BCEL) function imposes a large penalty for classifying any Covid class to Normal class. The experimental results reveal that the proposed InceptionResNetV2 model outperforms the other pre-trained model with training, validation and test accuracy of 99.2%, 98% and 97% respectively.
The novel Covid-19 is one of the leading cause of death worldwide in the year 2020 and declared as a pandemic by world health organization (WHO). This virus affecting all countries across the world and 5 lakh people die as of June 2020 due to Covid-19. Due to the highly contagious nature, early detection of this virus plays a vital role to break Covid chain. Recent studies done by China says that chest CT and X-Ray image may be used as a preliminary test for Covid detection. Deep learning-based CNN model can use to detect Coronavirus automatically from the chest X-rays images. This paper proposed a transfer learning-based approach to detect Covid disease. Due to the less number of Covid chest images, we are using a pre-trained model to classify X-ray images into Covid and Normal class. This paper presents the comparative study of a various pre-trained model like VGGNet-19, ResNet50 and Inception_ResNet_V2. Experiment results show that Inception_ResNet_V2 gives the better result as compare to VGGNet and ResNet model with training and test accuracy of 99.26 and 94, respectively.
Currently, the entire world is fighting against the Corona Virus (COVID-19). As of now, more than thirty lacs of people all over the world were died due to the COVID-19 till April 2021. A recent study conducted by China suggests that Chest CT and X-ray images can be used as a preliminary test for COVID detection. This paper propose a transfer learning-based mathematical COVID detection model, which integrates a pre-trained model with the Random Forest Tree (RFT) classifier. As the available COVID dataset is noisy and imbalanced so Principal Component Analysis (PCA) and Generative Adversarial Networks (GANs) is used to extract most prominent features and balance the dataset respectively. The Bayesian Cross-Entropy Loss function is used to penalize the false detection differently according to the class sensitivity (i.e., COVID patient should not be classified as Normal or Pneumonia class). Due to the small dataset, a pre-trained model like VGGNet-19, ResNet50 and Inception_ResNet_V2 were chosen to extract features and then trained them over the RFT for the classification task. The experiment results showed that ResNet50 gives the maximum accuracy of 99.51%, 98.21%, and 97.2% for training, validation, and testing phases, respectively, and none of the COVID Chest X-ray images were classified as Normal or Pneumonia classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.