The paper has proposed a mathematical model for parametric optimization problem of the steel lattice portal frame. The design variable vector includes geometrical parameters of the structure (node coordinates), as well as cross-sectional dimensions of the structural members. The system of constraints covers load-carrying capacities constraints formulated for all design sections of structural members of the steel structure subjected to all ultimate load case combinations. The displacements constraints formulated for the specifiednodes of the steel structure subjected to all serviceability load case combinations have been also included into the system of constraints. Additional requirements in the form of constraints on lower and upper values of the design variables, constraints on permissible minimal thicknesses, constraints on permissible maximum diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the conditions for designing gusset-less welded joints between structural members with circle hollow sections have been also considered in the scope of the mathematical model. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the formulated parametric optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the minimum weight, as well as minimum costs on manufacturing and erection have been presented.
The paper has proposed a mathematical model for parametric optimization problem of the steel lattice portal frame. The design variable vector includes geometrical parameters of the structure (node coordinates), as well as cross-sectional dimensions of the structural members. The system of constraints covers load-carrying capacities constraints formulated for all design sections of structural members of the steel structure subjected to all ultimate load case combinations. The displacements constraints formulated for the specified nodes of the steel structure subjected to all serviceability load case combinations have been also included into the system of constraints. Additional requirements in the form of constraints on lower and upper values of the design variables, constraints on permissible minimal thicknesses, constraints on permissible maximum diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the conditions for designing gusset-less welded joints between structural members with circle hollow sections have been also considered in the scope of the mathematical model. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the formulated parametric optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the minimum weight, as well as minimum costs on manufacturing and erection have been presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.