Diverse molecular (0D and 1D) as well as ionic (0D, 1D, 2D, mixed 1D–2D) crystal structures of complexes of aluminium and gallium trihalides with bis(4-pyridylethylene) were obtained by solvent-free melt reactions.
The complexes of group 13 element trispentafluorophenyl derivatives E(C6F5)3 (E = B, Al, Ga, In) with diethyl ether of 1:1 composition have been synthesized and structurally characterized. All compounds are isostructural. Thermal stability studies reveal that at elevated temperatures all complexes decompose with pentafluorobenzene evolution. The geometries and thermodynamic characteristics for the dissociation reactions of the compounds have been computed using three DFT methods. The 1H NMR α‐proton chemical shifts for the coordinated ether in deuteriobenzene and in CD2Cl2 solutions correlate with gas phase dissociation enthalpies of the complexes. Potentially high Lewis acidity of B(C6F5)3 is hindered by the large pyramidalization energy of the acceptor moiety.
Complexes formed by interaction of E(C6F5)3 (E = B, Al, Ga, In) with excess of acetonitrile (AN) were structurally characterized. Quantum chemical computations indicate that for Al(C6F5)3 and In(C6F5)3 the formation of a complex of 1:2 composition is more advantageous than for B(C6F5)3 and Ga(C6F5)3, in line with experimental observations. Formation of the solvate [Al(C6F5)3·2AN]·AN is in agreement with predicted thermodynamic instability of [Al(C6F5)3·3AN]. Tensimetry study of B(C6F5)3·CH3CN reveals its stability in the solid state up to 197 °C. With the temperature increase, the complex undergoes irreversible thermal decomposition with pentafluorobenzene formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.