Calcineurin B-like proteins (CBL)-interacting protein kinases (CIPKs) regulate the developmental processes, hormone signal transduction and stress responses in plants. Although the genome sequence of chickpea is available, information related to the CIPK gene family is missing in this important crop plant. Here, a total of 22 CIPK genes were identified and characterized in chickpea. We found a high degree of structural and evolutionary conservation in the chickpea CIPK family. Our analysis showed that chickpea CIPKs have evolved with dicots such as Arabidopsis and soybean, and extensive gene duplication events have played an important role in the evolution and expansion of the CIPK gene family in chickpea. The three-dimensional structure of chickpea CIPKs was described by protein homology modelling. Most CIPK proteins are localized in the cytoplasm and nucleus, as predicted by subcellular localization analysis. Promoter analysis revealed various cis-regulatory elements related to plant development, hormone signaling, and abiotic stresses. RNA-seq expression analysis indicated that CIPKs are significantly expressed through a spectrum of developmental stages, tissue/organs that hinted at their important role in plant development. The qRT-PCR analysis revealed that several CaCIPK genes had specific and overlapping expressions in different abiotic stresses like drought, salt, and ABA, suggesting the important role of this gene family in abiotic stress signaling in chickpea. Thus, this study provides an avenue for detailed functional characterization of the CIPK gene family in chickpea and other legume crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.