Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P∗ is the set of R-module homomorphism from P to R, then the tensor product P∗⊗RP can be considered as an R-coalgebra. Furthermore, P and P∗ is a comodule over coalgebra P∗⊗RP. Using the Morita context, this paper give sufficient conditions of clean coalgebra P∗⊗RP and clean P∗⊗RP-comodule P and P∗. These sufficient conditions are determined by the conditions of module P and ring R.
In ring and module theory, the cleanness property is well established. If any element of R can be expressed as the sum of an idempotent and a unit, then R is said to be a clean ring. Moreover, an R-module M is clean if the endomorphism ring of M is clean. We study the cleanness concept of coalgebra and comodules as a dualization of the cleanness in rings and modules. Let C be an R-coalgebra and M be a C-comodule. Since the endomorphism of C-comodule M is a ring, M is called a clean C-comodule if the ring of C-comodule endomorphisms of M is clean. In Brzezi´nski and Wisbauer (2003), the group ring R[G] is an R-coalgebra. Consider M as an R[G]-comodule. In this paper, we have investigated some sucient conditions to make M a clean R[G]-comodule, and have shown that every G-graded module M is a clean R[G]-comodule if M is a clean R-module.
Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irreducible if the intersection of every two ideals of R equals I, then one of them is I itself. Module theory is also known as an irreducible submodule, from the concept of an irreducible ideal in the ring. The set of R - module homomorphisms from M to itself is denoted by EndR(M). It is called a module endomorphism M of ring R. The set EndR(M) is also a ring with an addition operation and composition function. This paper showed the sufficient condition of an irreducible ideal on the ring of EndR(R) and EndR(M)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.